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Abstract

In the field of high performance computing, massively-parallel many-core processors such as
Intel Xeon Phi coprocessors are becoming popular because they can significantly accelerate var-
ious applications. In order to efficiently parallelize applications for such many-core processors,
several high-level programming models have been proposed. The de facto standard program-
ming model mainly for shared-memory parallel processing is OpenMP. For hierarchical parallel
processing, OpenMP version 4.0 or later allows programmers to create multiple thread teams.
Each thread team contains a bunch of newly-created synchronizable threads. When multiple
thread teams are used to execute an application, it is important to have dynamic load balancing
across thread teams, since static load balancing easily encounters load imbalance across teams,
and thus degrades performance. In this paper, we first motivate our work by clarifying the ben-
efit of using multiple thread teams to execute an irregular workload on a many-core processor.
Then, we demonstrate that dynamic load balancing across those thread teams has a potential of
significantly improving the performance of irregular workloads on a many-core processor, with
considering the scheduling overhead. Although such a dynamic load balancing mechanism has
not been provided by the current OpenMP specification, the benefits of dynamic load balancing
across thread teams are discussed through experiments using the Intel Xeon Phi coprocessor.
We evaluate the performance gain of dynamic load balancing across thread teams using a ray
tracing code. The results show that such a dynamic load balancing mechanism can improve the
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performance by up to 14% compared to static load balancing across teams, with considering
scheduling overhead.

Keywords: OpenMP, Thread team, Load balancing, Irregular workload

1 Introduction

Recent years, accelerators and coprocessors such as Intel Xeon Phi [11] have gained more and more
attention, especially in the field of high performance computing (HPC), because they sometimes
achieve several orders of magnitude higher performance in comparison with general-purpose proces-
sors, i.e., central processing units (CPUs). The significant performance gain is due to the massively
parallel architecture of the coprocessors, which allows a computation code to be executed in a
highly-parallel fashion.

Thanks to the powerful computing capability of coprocessors, computing systems equipped with
both CPUs and coprocessors, so-called heterogeneous systems, have been widely used to accelerate
the execution of HPC applications. This paper uses a system equipped with Intel Xeon CPUs and
Intel Xeon Phi coprocessors as an example of the heterogeneous systems. In the heterogeneous
system, Xeon Phi is used as an accelerator to speedup the execution of data-parallel portion of an
application. On the other hand, CPU handles non data-parallel parts, such as serial code execution
or data movement between the CPU and Xeon Phi coprocessor. Although Intel commercial products
are used as a case study in this paper, dynamic load balancing across teams introduced in this paper
is applicable to the systems from other vendors.

Since many-core processors need massive parallelism for efficient execution, programming for such
a processor to exploit its computing power is becoming a challenge. Fortunately, there exist several
high-level programming models (e.g., OpenMP [5] and OpenACC [21]) for parallel programming
of many-core processors. OpenMP is one of the standards for parallel programming. It recently
provides a target construct for offloading a parallel computation to a target device. Moreover, it
provides a teams construct to create multiple thread teams to execute a computation on the target
device. A teams construct must be contained within a target construct. A thread team is a team
of newly-created synchronizable threads, and multiple thread teams are called a thread league in
the OpenMP terminology. The maximum number of created thread teams can be specified using
a num teams clause, and the maximum number of threads in each team can be specified using a
thread limit clause. Introducing the concepts of a thread league and teams can provide a hierarchical
execution model for exploiting nested parallelism in the OpenMP programming. A thread team can
be newly created, and it works independently from other spawning threads and their teams. In
this work, an OpenMP target construct is used for offloading parallel executions on a Xeon Phi
coprocessor, and a teams construct is used to create multiple thread teams on the coprocessor.

The execution model of OpenMP is a fork-join model. When a thread encounters a parallel
construct, it creates a parallel region that is executed by a thread team. The encountering thread
becomes the master thread of the team. When a thread finishes its computation, it waits for the
others in the current team at an implicit barrier at the end of the parallel region. When all threads
in the current team reach the barrier, they join the master thread.

Load balancing is a fundamental issue for data-parallel execution in order to achieve a high
performance. In fact, programmers often find that the performance of parallel execution is far worse
than the peak performance because of workload imbalance. During execution, some threads are
busy with computation while others might have less computation to deal with. What is worse,
some threads remain completely idle until others finish their work. It will badly hurt the computing
efficiency of parallel execution. Overall, load imbalance leads to performance degradation of parallel
execution. Conversely, if programmers can perfectly balance the workload among threads, it is
expected that they can achieve a better performance.

In many cases, the iterative computation of a particular loop nest consumes most of the execution
time of a given application. Such a loop nest is called a hotspot of the application. There are several
recent studies [7, 23, 31] focusing on optimizing the workload balance of the hotspots so as to improve
the overall performance of an application. In this work, we are concentrating on load balancing for
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such hotspots executed on a Xeon Phi coprocessor using OpenMP directives.

This work assumes that irregular loop nests are executed on one Xeon Phi coprocessor using
OpenMP directives. A loop nest is considered irregular if the execution time of each iteration
significantly varies. If the execution time of such a loop nest is dominant in the total execution
time of an application, the application is considered an irregular workload. Programmers need
to carefully manage the workloads across multiple thread teams as well as within a thread team,
because load imbalance can easily occur for irregular loop nests. As shown later in this paper, using
multiple thread teams is better than using a single one for irregular loop nests in terms of improving
performance.

The current OpenMP specification supports both static and dynamic loop scheduling mechanisms
within a thread team, and also supports a static scheduling mechanism across multiple thread
teams. When multiple thread teams are used to execute an application, it is strongly required
to have dynamic load balancing across thread teams, since static load balancing easily encounters
load imbalance across teams, and thus degrades performance. Therefore, this work focuses on
dynamically balancing the workloads across multiple thread teams created by OpenMP directives.
Theoretically, the optimal workload distribution should be achieved when multiple teams complete
their computations at the same time.

In this paper, we have two general assumptions. First, for a specific application, the overhead
of inter-team dynamic scheduling can be estimated using the overhead of intra-team scheduling of
a single-team execution. This assumption implies that the data exchange overhead among thread
teams is similar to that among threads. Since thread teams as well as threads can share a memory
region, we expect that the data exchange overhead among teams does not greatly differ from that
among threads. Second, the overhead of inter-team dynamic scheduling increases exponentially
with the number of thread teams. The results in [15] have shown that the overhead of intra-team
dynamic scheduling is likely to increase exponentially with the number of threads. Similarly, the
second assumption is considered reasonable. Based on the first assumption, we estimate the overhead
of inter-team dynamic scheduling for two-team execution using the overhead of intra-team dynamic
scheduling. Then, we further estimate the overhead of inter-team dynamic scheduling for more than
two teams based on the second assumption. In this paper, a scheduling overhead only refers to a
dynamic scheduling overhead, and no scheduling overhead is assumed in static scheduling.

In OpenMP, intra-team dynamic scheduling methods use a so-called task pooling algorithm
[13, 16], which allows a scheduler to distribute loop iterations chunk by chunk to the threads in a
team. The chunk size is the number of iterations in the chunk, and it can be tuned to achieve a high
performance. Usually, the overhead of dynamic scheduling decreases as the chunk size increases,
as discussed in [15]. Hence, the intra-team dynamic scheduling overhead is maximum when the
chunk size is 1. Though a large chunk size reduces the scheduling overhead, it might lead to load
imbalance that degrades performance. Thus, the chunk size needs to be tuned with considering a
trade-off between load balancing and the scheduling overhead.

The objective of this work is to clarify the advantage of dynamic load balancing among thread
teams. In this paper, we use an irregular workload code as a target application. First, a motivating
example shows that use of multiple thread teams could be important to achieve a better performance
in the case of executing irregular workloads. Then, we use a static load balancing method to emulate
dynamic load balancing across thread teams. Afterwards, the inter-team scheduling overhead is
estimated using the intra-team scheduling overhead. Finally, we evaluate the performance gain of
dynamic load balancing with an estimated scheduling overhead.

The contributions of this paper are threefold: First, it clarifies the advantage of execution using
multiple thread teams. For irregular applications, execution with multiple thread teams outperforms
that with a single thread team in terms of execution performance. Second, it discusses the overhead
of inter-team dynamic load balancing under the aforementioned assumptions. Third, it clarifies the
benefit of dynamic load balancing across thread teams for irregular workloads. Static load balancing
might lead to a poor performance because irregular workloads can easily encounter load imbalance
across thread teams. To the best of our knowledge, this work is the first to discuss the dynamic load
balancing issue across thread teams for irregular workloads. In this work, a dynamic load balancing
mechanism is emulated by using a static one for the discussion.
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for2int t=};t<N;tVVS{l &&l ‘N’lphases
Ray caml= ;change_camera_position_here 2tS
for 2int y=};ly<h;lyVVS{l &&lImagelcolumns

samps = ;change_sampling_rate_here 2tClyS
for 2int x=}; x<w;lxVVS{ &&lImagelrows

forl2int sy=}C i=2hdydASbwVx; sy<2; syVVS{ &&Subpixel
forl2int sx=}; sx<2; sxVVClr=Vec2SS{ &&lSubpixel

forl2int s=};ls<samps;lsVVS{l &&lSampling
&bCalculatelradiancelb&
&blItldependslonlmaterialsloflobjectsb&
&blItlalsoldependslonlcameralpositionl1ldirectionb&

}
&bAccumulatelradiancelb&

}
}

}
}

}

Figure 1: A code example of ray tracing. N phases are created. The camera position and direction,
as well as the sampling rate, are changed from phase to phase.

The rest of this paper is organized as follows. Section 2 shows a motivating example of this work,
and discusses the importance of dynamic load balancing among thread teams. Section 3 describes the
related work. Section 4 discusses our approach to evaluation of inter-team dynamic load balancing.
It also discusses a method to evaluate the overhead of intra-team dynamic load balancing. Section
5 shows the evaluation results, and Section 6 gives concluding remarks.

2 Importance of dynamic load balancing across thread teams
in the OpenMP programming model

In this section, a motivating example is shown using a ray tracing code. The ray tracing algorithm
[10, 26] is one of the basic techniques to generate a photo-realistic image in computer graphics. It
renders an image by tracing the paths of rays when they encounter objects. Fig. 1 shows an example
of the hotspot of the ray tracing algorithm, which is based on the code available at [2], and modified
to render multiple images by adding the outermost loop and changing the camera position and the
sampling rate. Let a phase be a time period, during which an independent unit of work is executed
by a given application. In the code segment in Fig. 1, we assume that there are N phases, and
one image is generated in each phase. By changing the camera position and the sampling rate for
each image generation, the execution time of each phase could be significantly varied. Moreover, the
execution time of each iteration of the innermost loop varies drastically. Accordingly, the modified
ray tracing loop nest is irregular.

This section shows that multiple thread teams rather than a single one are required to achieve a
higher performance with the code. Multiple teams in OpenMP are originally introduced for nested
parallelism. However, in this experiment, our purpose is not to provide such nested parallelism for the
ray tracing code. Our intention is to investigate the performance changes according to the number
of thread teams. Therefore, in the experiment, we measure the execution times for different image
sizes by changing the number of thread teams. The number of thread teams and the thread count in
each team can be specified using the OpenMP directives. The scheduling method within a team can
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Table 1: The experimental environment in motivating experiment
OS CentOS Release 6.7

Host Intel Xeon CPU E5-2690 @2.9GHz
Device Intel Xeon Phi 5110P, 60 cores in total

Compiler Intel compiler version 16.0.2 with -O3 option
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Figure 2: Performances with different numbers of thread teams across various image sizes.

also be designated. The number of teams varies from 1 to 60, while we maintain the overall thread
count as 240 regardless of how many teams are created. OpenMP’s dynamic scheduling mechanism
within a team, and the static scheduling mechanism across teams, are used in this experiment. The
experimental environment is shown in Table 1.

The results of the above experiment are shown in Fig. 2. Different curves represent different
image sizes. The horizontal axis represents the number of thread teams used for execution, and the
vertical axis represents the execution time in seconds. Fig. 2 illustrates that a different number of
teams leads to a different performance even if the image size is the same. Furthermore, multiple
teams outperform a single one across all image sizes when the number of teams is less than 16. If
the number of teams is too large such as 60, it might lead to a worse performance than using a single
team, because too few threads in each team hurt the parallelism. Thus, from the above motivating
experiment, we conclude that using multiple teams is potentially better than using a single team for
irregular loop nests, even if the inter-team scheduling mechanism is a static one.

The reason why multiple thread teams outperform a single one is that the execution using
multiple thread teams can reduce the number of OpenMP threads joining internal synchronization
at runtime, because threads in different teams do not need to synchronize while threads within
a team need to synchronize. As shown in [8, 15], the synchronization overhead increases with the
number of threads that are involved in the synchronization. Therefore, the synchronization overhead
of multiple-team execution is smaller than that of single-team execution.

The above motivating experiment shows that using multiple thread teams is often a better choice
than using a single team to execute irregular workloads. If multiple thread teams are used to execute
an irregular workload, it requires that the workloads among the thread teams are balanced, in order
to achieve a high performance. However, a static load balancing mechanism might easily suffer
from load imbalance, especially for irregular workloads. Therefore, this paper clarifies the expected
performance gain by introducing a dynamic load balancing mechanism across thread teams.
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3 Related Work

The OpenMP specification [5] provides a target construct to support offloading workloads to a
target device for acceleration. An omp teams construct creates a league of thread teams on the
target device, and the master thread of each team executes the associated code region. A thread
league consists of a set of thread teams, while a thread team consists of a set of synchronizable
threads. Currently, OpenMP supports both static and dynamic scheduling mechanisms within a
thread team. Programmers can easily specify a scheduling mechanism by using a schedule clause in
the OpenMP directive. However, only a static scheduling mechanism is supported across different
thread teams. For irregular codes, static scheduling may lead to a poor performance. Thus, our
work aims to examine the benefits of dynamic scheduling across thread teams.

Many researches focus on dynamic load balancing for heterogeneous systems. Wang et al. [30]
have proposed an asymptotic profiling method to schedule loop iterations between a CPU and a
GPU. Ren et al. [29] have proposed a method to test various work distributions between a CPU
and a GPU to find the most efficient distribution. Boyer et al. [6] have presented a dynamic load
balancing mechanism that requires no offline training and responds automatically to performance
variability. Other approaches, such as in [17, 20, 28], use modest amounts of initial training to
select the workload distribution. Scogland et al. [27] also have proposed a dynamic load balancing
mechanism across CPUs and GPUs. They consider different computation patterns of the accelerated
code region. All those researches only concern about how the workload should be distributed in the
heterogeneous systems. They do not care about fine-grained thread scheduling either on hosts or
devices. Unlike other researches, our work focuses on dynamic scheduling of the workloads across
thread teams on a device. Although we use Intel Xeon Phi as an example of the device, the dynamic
scheduling mechanism is applicable to other devices.

Some related studies use dynamic scheduling for irregular applications. Durand et al. [14] have
proposed a new OpenMP loop scheduler that is able to perform dynamic load balancing while taking
memory affinity into account for irregular applications. Min et al. [19] have presented BANBI, a
dynamic scheduling method for irregular programs on many-core systems. It is specifically designed
for stream programs. Their applications do not use OpenMP device constructs for execution on
a target device. They mainly schedule the iterations among different threads or different cores.
Our work uses high-level OpenMP device constructs for offloading the workloads to a device. We
specifically use multiple thread teams to execute the codes, and demonstrate that dynamic scheduling
across thread teams is crucial for high performance.

In addition to some centralized scheduling methods [18, 30] for dynamic load balancing, work
stealing [1, 4, 12, 22] is a popular scheduling method. It is proved that work stealing is efficient
for scheduling some multi-threaded executions. Prokopec et al. [25] have presented a work-stealing
algorithm for irregular data-parallel workloads. Their method allows workers to decide the workload
distribution in a lock-free, workload-driven manner. However, work stealing requires data syn-
chronization whenever a steal happens. Frequent steals might introduce much overhead, and thus
degrade performance. In addition to general-purpose scheduling methods, some studies have pro-
posed domain-specific scheduling mechanisms for dynamic load balancing. Their domains vary from
fluid dynamics [32] to linear algebra [31]. All those works do not address dynamic load balancing
across OpenMP thread teams.

Extensive studies [3, 8, 9, 15, 24] have been performed to measure the overheads of OpenMP work-
sharing and mutual exclusion directives in the literature. Bull [8] has measured the synchronization
overheads of some basic OpenMP constructs, and it also has introduced a method to measure the
overhead of intra-team dynamic scheduling. In this work, we use the idea in [8] to measure the
intra-team dynamic scheduling overhead. More details are described in Section 4.2. Fredrickson et
al. [15] have presented performance characteristics (e.g., synchronization and scheduling overheads)
of OpenMP constructs on a large symmetric multiprocessor using various benchmark suites. The
results in [15] have shown that intra-team dynamic scheduling overhead is likely to increase expo-
nentially with the number of threads. Based on the results, we make a similar assumption that
inter-team dynamic scheduling overhead exponentially increases with the number of thread teams.
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Table 2: Six scenarios
Scenarios Description

SS Single team, static scheduling within the team
SD Single team, dynamic scheduling within the team

MSS Multiple teams, static across teams, static within each team
MSD Multiple teams, static across teams, dynamic within each team
MDS Multiple teams, dynamic across teams, static within each team
MDD Multiple teams, dynamic across teams, dynamic within each team

4 Methodology

4.1 Emulation of inter-team dynamic load balancing

This subsection presents our methodology to discuss the benefit of a dynamic load balancing mech-
anism across multiple thread teams.

Since inter-team dynamic scheduling has not been supported by the current OpenMP specifica-
tion, we use static load balancing to mimic dynamic one. We assume that a given application is
executed through multiple phases (e.g., N phases, from phase 1 to phase N ). A workload ratio rj (j
= 0, M-1 and M is the number of thread teams) is defined using Eq. (1).

rj =
Number of iterations executed by team j

Total number of iterations executed by all teams
. (1)

A workload vector v is defined as a vector of the workload ratios, as shown in Eq. (2).

v = (r0, r1, ..., rM−1). (2)

For each phase, a workload vector should be adjusted so that all teams finish their computations at
the same time. However, the current OpenMP specification does not support dynamical adjustment
of the workload vector. Thus, with a fixed workload vector, we execute the application from be-
ginning to end while measuring the execution time of each phrase. The execution is repeated while
changing the workload vector. As a result, we can obtain the best workload vector for each phase
that can minimize the execution time of the phase. By summing up the shortest execution times of
all phases, we can obtain the total execution time of ideal dynamic load balancing that can perfectly
predict the best workload vector for every phase without any runtime overhead.

For example, if ti(v) represents the execution time of phase i (i = 1, N ) when the workload
vector is v, the execution time d of an application using dynamic load balancing can be expressed
using Eq. (3).

d =

N∑
i=1

min
v

ti(v). (3)

Although a dynamic load balancing mechanism has not been implemented for the OpenMP pro-
gramming model, this performance model can be used to estimate the benefit of introducing such a
mechanism. The above performance model ignores the runtime overhead of dynamic load balancing.
However, we can estimate the potential performance gain by such a dynamic load balancing mech-
anism if we ignore the scheduling overhead and also assume that the workloads can be balanced
immediately and perfectly. Then, based on the estimation, we discuss whether the performance gain
could be larger than the dynamic scheduling overheads.

4.2 Scheduling overhead

In this work, we have two assumptions discussed in Section 1. Based on the first assumption, the
overhead of inter-team dynamic scheduling for two-team execution is estimated using the overhead
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#pragma omp parallel

for (j=0; j<repeats; j++){

#pragma omp for schedule (schetype, chunksize)

for (i=0; i<itersperthread * omp_get_num_threads(); i++){

/*Loop Body*/

}

}

Figure 3: Loop (nest) L1 parallelized by OpenMP directives

for (i=0; i<itersperthread; i++){

/*Loop Body*/

}

Figure 4: Loop (nest) L2 executed using a single thread

of intra-team dynamic scheduling. Then, the overhead of inter-team dynamic scheduling for more
than two teams is further estimated based on the second assumption. By combining the performance
model in Eq. (3) with the estimated scheduling overhead, we can discuss the performance gain of
inter-team dynamic load balancing with runtime overheads.

A method to evaluate the overhead of intra-team dynamic load balancing is described in [8].
We employ the method to evaluate the intra-team dynamic scheduling overhead in this work. The
method in [8] is briefly described as follows. Assume that a loop (nest) is parallelized using an
OpenMP parallel for constructs, denoted as Loop (nest) L1, as shown in Fig. 3. We also have a
serialized version of the same loop (nest), denoted as Loop (nest) L2, as shown in Fig. 4. Our goal
is to measure the scheduling overhead of Loop L1. First, we measure execution time t1 of Loop
L1. Then, we measure execution time t2 of Loop L2 using a single thread. Finally, the scheduling
overhead t is given by Eq. (4).

t =
|t1− t2|
repeats

. (4)

If the Loop bodys shown in Figs. 3 and 4 are replaced with the ray tracing loop nest, we can
measure the intra-team scheduling overhead of the ray tracing code. The scheduling type can be
designated as dynamic. To find the upper bound of the overhead, we let the chunk size be 1. Note
that the intra-team scheduling overhead can be used to estimate the inter-team scheduling overhead.

5 Evaluations

5.1 Experimental setup

We use a modified ray tracing code as the target irregular code shown in Fig. 1. The system used
for the evaluation is the same as that in Section 2.
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Table 3: The best workload vectors in each phase for both movies when two teams are used for
execution.

Best workload vector MDS-1 MDD-1 MDS-2 MDD-2
Phase 1 (0.7, 0.3) (0.65, 0.35) (0.65, 0.35) (0.65, 0.35)
Phase 2 (0.6, 0.4) (0.6, 0.4) (0.65, 0.35) (0.65, 0.35)
Phase 3 (0.7, 0.3) (0.65, 0.35) (0.7, 0.3) (0.65, 0.35)
Phase 4 (0.7, 0.3) (0.65, 0.35) (0.65, 0.35) (0.65, 0.35)
Phase 5 (0.25, 0.75) (0.35,0.65) (0.2, 0.8) (0.35, 0.65)
Phase 6 (0.3, 0.7) (0.3, 0.7) (0.35, 0.65) (0.35, 0.65)
Phase 7 (0.35, 0.65) (0.4, 0.6) (0.35, 0.65) (0.35, 0.65)
Phase 8 (0.5, 0.5) (0.5, 0.5) (0.35, 0.65) (0.35, 0.65)

5.2 Performance of ideal inter-team dynamic load balancing

We compare the performances of six different scenarios shown in Table 2 using the modified ray
tracing code. SS stands for single-team execution with static scheduling, which means a single-team
execution where static scheduling is used within the team. SD stands for single-team execution
with dynamic scheduling, which means a single-team execution where dynamic scheduling is used
within the team. MSS stands for multiple-team execution with static scheduling across teams and
within each team, which means multiple-team execution where static scheduling is used across
teams and within each team. MSD stands for multiple-team execution with static scheduling across
teams and dynamic scheduling within each team, which means multiple-team execution where static
scheduling is used across teams and dynamic scheduling is used within each team. MDS stands for
multiple-team execution with dynamic scheduling across teams and static scheduling within each
team, which means multiple-team execution where dynamic scheduling is used across teams and
static scheduling is used within each team. MDD stands for multiple-team execution with dynamic
scheduling across teams and within each team, which means multiple-team execution where dynamic
scheduling is used across teams and within each team. In the six scenarios, SS, SD, MSS, and MSD
are already supported in the current OpenMP specification. Their performances can be evaluated in
a straightforward way. However, MDS and MDD are not supported yet. Thus, we use the proposed
methodology described in Section 4 to mimic MDS and MDD.

In the evaluation, we create eight phases to execute the ray tracing loop nest, which means N = 8
in Fig. 1. One image is rendered in each phase. The image size is 256 x 256 pixels in the evaluation.
By changing the camera position and direction from phase to phase, we can create a movie. We
create two movies by moving the camera in two different ways. MDS-1 and MDD-1 are used to
represent the two scenarios for the first movie, while MDS-2 and MDD-2 are used for the second
movie. For each movie, we statically divide the iteration space of loop y into M (M is the number
of teams) parts. Each part is executed by a corresponding thread team. An example is shown in
Fig. 5 when the number of teams M = 2. By varying the workload vector, we measure the execution
time with each vector. The workload ratio of a team is at least 5%, increased by 5%. Then, we
find the best workload vector that leads to the best performance regarding the phase. Finally, the
best execution time of each phase is accumulated to estimate the total execution time with MDS or
MDD.

In Section 5.2, we use two thread teams as well as four teams to perform the evaluation. Sec-
tion 5.2.1 presents the results using two teams, and Section 5.2.2 presents the results using four
teams.

5.2.1 Results using two thread teams

The results using two teams are presented as follows. Table 3 lists the best workload vectors in
each phase of MDS and MDD, for both movies. In Table 3, we can see that the best workload
vectors in each phase are different from (0.5, 0.5), except in Phase 8. It means that workload
imbalance exists in almost all the phases. Figs. 6 and 7 show the execution times for phases in
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for-int t=&;t<N;tSS1{* jj* ‘N’*phases
Ray cam*= ;change_camera_position_here -t1
if*- 1*{omp_get_team_num-1*==*&

for -int y=&; y<h2 ; ySS1{* jj*Image*columnsworkload_ratio
samps = ;change_sampling_rate_here -tb*y1
for -int x=&; x<w;*xSS1{ jj*Image*rows

for*-int sy=&b i=-hVyV}12wSx; sy<A; sySS1{ jjSubpixel
for*-int sx=&; sx<A; sxSSb*r=Vec-11{ jj*Subpixel

for*-int s=&;*s<samps;*sSS1{* jj*Sampling
j2Calculate*radiance*2j
j2*It*depends*on*materials*of*objects2j
j2*It*also*depends*on*camera*position*, direction2j

}
j2Accumulate*radiance*2j

}}}}
}* jjEnd*if
else if - 1 {omp_get_team_num-1*== }

for*-int y=h2 ; y<h;*ySS1{* jj*Image*columnsworkload_ratio
samps = ;change_sampling_rate_here -tb*y1
for -int x=&;*x<w;*xSS1{* jj*Image*rows

for*-int sy=&b i=-hVyV}12wSx; sy<A; sySS1{* jjSubpixel
for*-int sx=&; sx<A; sxSSb*r=Vec-11{* jj*Subpixel

for*-int s=&;*s<samps;*sSS1{* jj*Sampling
j2Calculate*radiance*2j
j2*It*depends*on*materials*of*objects2j
j2*It*also*depends*on*camera*position*,*direction2j

}
j2Accumulate*radiance 2j

}}}}
}* jj*End*else*if

}*jj*End*t=&bN

Figure 5: Statically dividing the iteration space of loop y when M = 2

various scenarios. Figs. 6 and 7 shows the results for the first movie and second movies, respectively.
In these figures, different curves represent different scenarios. MDS and MDD can be either optimal
or suboptimal. The optimal MDS (MDD) means that the best workload ratio in each phase is used,
and the suboptimal MDS (MDD) means that the second-best workload ratio in each phase is used to
discuss the performance gain with imperfect prediction. In Figs. 6 and 7, we can see that execution
times vary from phase to phase for a specific scenario. This is because the ray tracing code is an
irregular workload. Moreover, we can see that the optimal MDD is the best scenario among the six
scenarios, for both movies. In the rest of this paper, unless otherwise stated, MDS (MDD) represents
the optimal MDS (MDD).

Fig. 8 shows the total execution times for both movies when two teams are used for execution. The
average execution times of both movies are also shown. In Fig. 8, we can see that dynamic scheduling
within a thread team is always better than static scheduling. This is because dynamic scheduling
improves the load balance within a thread team. Moreover, MDS outperforms MSS, and MDD
outperforms MSD, for both movies. On average, MDS achieves 14.5% performance improvement
in comparison with MSS, and MDD achieves 10.9% performance improvement in comparison with
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Figure 6: The execution times for phases of the first movie. Two teams are used for the execution.
MDS and MDD can be either optimal or suboptimal. The optimal MDS means that the best
workload ratio in each phase is used, and the suboptimal MDS means that the second-best workload
ratio in each phase is used to discuss the performance gain with imperfect prediction.

Table 4: The best workload vectors in each phase for both movies when four teams are used for
execution.

MDS-1 MDD-1 MDS-2 MDD-2
Phase 1 (0.5,0.25,0.15,0.1) (0.5,0.25,0.15,0.1) (0.5,0.25,0.15,0.1) (0.5,0.25,0.15,0.1)
Phase 2 (0.55,0.25,0.1,0.1) (0.55,0.25,0.15,0.05) (0.55,0.25,0.15,0.05) (0.5,0.25,0.15,0.1)
Phase 3 (0.55,0.25,0.15,0.05) (0.5,0.25,0.15,0.1) (0.5,0.25,0.2,0.05) (0.5,0.25,0.15,0.1)
Phase 4 (0.4,0.3,0.2,0.1) (0.45,0.3,0.15,0.1) (0.4,0.3,0.2,0.1) (0.4,0.3,0.2,0.1)
Phase 5 (0.15,0.2,0.3,0.35) (0.15,0.2,0.25,0.4) (0.1,0.15,0.25,0.5) (0.15,0.2,0.25,0.4)
Phase 6 (0.1,0.15,0.2,0.55) (0.1,0.15,0.25,0.5) (0.15,0.2,0.25,0.4) (0.15,0.2,0.25,0.4)
Phase 7 (0.1,0.15,0.3,0.45) (0.15,0.2,0.3,0.35) (0.2,0.2,0.3,0.3) (0.15,0.2,0.25,0.4)
Phase 8 (0.25,0.25,0.25,0.25) (0.25,0.25,0.25,0.25) (0.2,0.2,0.3,0.3) (0.15,0.2,0.25,0.4)

MSD. Thus, dynamic scheduling across thread teams improves performance in comparison with
static scheduling when two teams are used for execution. This is because the workloads across the
thread teams are more balanced.

5.2.2 Results using four thread teams

The results using four teams are presented as follows. Since the search space of workload vectors
is large in the case of four teams, a heuristic way is used to find the best workload vector in each
phase. The best workload vector in each phase is summarized in Table 4, for both movies. Figs. 9
and 10 show the execution times of phases for the first movie and second movie, respectively.

Fig. 11 shows the total execution time of each scenario for both movies when four teams are
used for execution. The average execution times of both movies are also shown. In Fig. 11, we
can see that MDS outperforms MSS, and MDD outperforms MSD, for both movies. On average,
MDS achieves 16.5% performance improvement in comparison with MSS, and MDD achieves 11%
performance improvement in comparison with MSD. Thus, dynamic scheduling across thread teams
improves performance in comparison with static scheduling when four teams are used for execution.
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Figure 7: The execution times in each phase of various scenarios for the second movie. Two teams
are used for the execution.

In summary, dynamic scheduling within a team is used for balancing the workload within a team,
and dynamic scheduling across teams is used for balancing the workload across different teams.
Both of them can be used when load imbalance exists both within a team and across different
teams. Usually, we cannot know the optimal workload distribution beforehand. That is why static
scheduling often encounters load imbalance. With dynamic scheduling, we can dynamically find the
best workload distribution across thread teams, though it unavoidably suffers from some scheduling
overhead. In Section 5.4, we discuss the inter-team scheduling overhead.

5.3 Normalized performance

The performance model expressed by Eq. (3) assumes that the workload vector is perfectly predicted
in each phase. However, in practical use, it is difficult to predict the optimal workload vector in
each phase to obtain the optimal performance. If the workload vector decided by the proposed
mechanism is not optimal, the performance gain would be less than the optimal one. We discuss
the performance gain, assuming imperfect prediction of a workload vector. As an example, suppose
that a sub-optimal workload vector in each phase is predicted instead of the optimal one. In such a
case, we summarize normalized performances of MDS and MDD in Fig. 12 for both movies, where
the normalized performance is given by Eq. (5).

Normalized performance =
Optimal execution time

Suboptimal execution time
× 100%. (5)

The normalized performance indicates how close the suboptimal execution time is to the optimal
execution time. In Fig. 12, we can see that the normalized performances are quite high (no less
than 95.9%). These results indicate that the performance gain is obtained even if the prediction is
not perfect. The performance gain with the sub-optimal workload vector is almost comparable to
that with the optimal one. Since we divide the workload ratio by a granularity of 5%, the results
also indicate that the granularity is good enough so that we can predict an accurate sub-optimal
performance, if not the optimal performance.

In this paper, the inter-team dynamic load balancing mechanism is emulated by using a static
one, and thus the obtainable performance improvement heavily depends on how accurate the work-
load vector is predicted in each phase. In practical use, such a prediction can be performed using
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Figure 8: Performance comparison of six scenarios for both movies when two teams are used for
execution

Table 5: The maximum overheads in comparison with MDD, for both movies.
Time (s) 1st movie 2nd movie

2-team execution Overhead 0.26 0.28
2-team execution MDD 56.748 62.29777
4-team execution Overhead 2.18 2.35
4-team execution MDD 51.1996 57.643

empirical parameter tuning. By executing a given program while changing its workload vector and
measuring the performance, we can obtain an appropriate parameter configuration that can achieve
high performance. However, the search space of a workload vector significantly increases with more
thread teams and more subtle granularity of the workload ratio. Thus, how to prune the search
space is a challenge. This will be further discussed in our future work.

5.4 Scheduling overhead

This subsection shows the inter-team scheduling overhead that is estimated based on the assumptions
shown in Section 1. The results are shown in Table 5 in comparison with MDD. In the case of two-
team execution, the overheads are 0.26 seconds and 0.28 seconds for the first and second movies,
respectively. On the other hand, in the case of four-team execution, the overheads are estimated
as 2.18 seconds and 2.35 seconds for the first and second movies, respectively. Since the chunk size
is chosen as 1, the overheads in Table 5 can be considered the maximum overheads. In Table 5,
we can see that, in the case of two-team execution, the overheads are around 0.46% and 0.45% of
the execution times of MDD for the first movie and the second movies, respectively. Thus, the
scheduling overheads are considered negligible. In the case of four-team execution, the overheads
are around 4.3% and 4.1% of the execution times of MDD for the first movie and the second movies,
respectively. With considering the scheduling overhead, MDS outperforms MSS by 13.8% on average
of two movies, and MDD outperforms MSD by 7.2% on average of two movies.
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Figure 9: The execution times in each phase of various scenarios for the first movie. Four teams are
used for the execution.

6 Conclusions

Massively-parallel many-core processors are gaining more attraction than ever because of their high
performance capabilities. Because of the many-core architecture, it is crucial to have balanced
workloads on the processor. This work uses OpenMP directives to offload a hotspot to an Intel
Xeon Phi coprocessor. Multiple thread teams are created on the coprocessor to execute irregular
workloads. A motivating experiment shows that using multiple thread teams can achieve a better
performance than using a single one because use of multiple teams reduces the overhead of thread
synchronizations compared to a single team.

This paper discusses dynamic scheduling across thread teams that can further accelerate execu-
tion in comparison with static one, because the workloads are more balanced. To clarify the benefit
of dynamic scheduling across OpenMP thread teams, this work uses an irregular code, the modified
ray tracing code, for evaluations. Although this paper only uses the ray tracing code as a target
application, other irregular workloads can also benefit from inter-team dynamic load balancing. In
this paper, an ideal inter-team dynamic load balancing mechanism is emulated using a static one.
Moreover, the scheduling overhead of inter-team dynamic load balancing is estimated based on two
simple assumptions. The results show that, in the case of two-team execution, the inter-team dy-
namic load balancing mechanism can achieve a better performance than a static one with a negligible
scheduling overhead. In the case of four-team execution, the overheads are around 4.3% and 4.1% of
the execution times of MDD for the first movie and the second movie, respectively. With considering
the scheduling overhead, MDS outperforms MSS by 13.8% on average, and MDD outperforms MSD
by 7.2% on average. Those results demonstrate that dynamic load balancing across OpenMP thread
teams is a promising way to achieve a high performance.

The future work of this paper includes empirically tuning workload vectors to predict the best
one. Since the search space of a workload vectors increases dramatically with the number of thread
teams and the granularity of workload ratios, pruning the search space is a challenge.
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Figure 10: The execution times in each phase of various scenarios for the second movie. Four teams
are used for the execution.
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