
International Journal of Networking and Computing – www.ijnc.org
ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 1, Number 1, pages 96–113, January 2011

CHPS: An Environment for Collaborative Execution on Heterogeneous Desktop Systems

ALEKSANDAR ILIĆ
INESC-ID, IST/TU Lisbon, Rua Alves Redol 9

Lisbon, 1000-029, Portugal

LEONEL SOUSA
INESC-ID, IST/TU Lisbon, Rua Alves Redol 9

Lisbon, 1000-029, Portugal

Received: July 11, 2010
Revised: October 30, 2010

Accepted: December 13, 2010
Communicated by Akihiro Fujiwara

Abstract

Modern commodity desktop computers equipped with multi-core Central Processing Units
(CPUs) and specialized but programmable co-processors are capable of providing a remarkable
computational performance. However, approaching this performance is not a trivial task as it
requires the coordination of architecturally different devices for cooperative execution. Coordi-
nating the use of the full set of processing units demands careful coalescing of diverse programing
models and addressing the challenges imposed by the overall system complexity.

In order to exploit the computational power of a heterogeneous desktop system, such as a
platform consisting of a multi-core CPU and a Graphics Processing Unit (GPU), we propose
herein a collaborative execution environment that allows to cooperatively execute a single ap-
plication by exploiting both task and data parallelism. In particular, the proposed environment
is able to use the different native programming models according to the device type, e.g., the
application processing interfaces such as OpenMP for the CPU and Compute Unified Device
Architecture (CUDA) for the GPU devices. The data and task level parallelism is exploited
for both types of processors by relying on the task description scheme defined by the proposed
environment.

The relevance of the proposed approach is demonstrated in a heterogeneous system with a
quad-core CPU and a GPU for linear algebra and digital signal processing applications. We
obtain significant performance gains in comparison to both single core and multi-core executions
when computing matrix multiplication and Fast Fourier Transform (FFT).

Keywords: Heterogeneous desktop systems, Unified execution environment, Graphics Processing
Units

1 Introduction

Parallel computing systems are becoming increasingly heterogeneous and hierarchical. At the level
of a single device, a widely accepted trend for an increase of device performance is to assemble more
processing cores onto a single chip and/or to improve the architecture, e.g. multi-core CPUs. On the

96



International Journal of Networking and Computing

other hand, relatively low-cost and efficient accelerators, such as GPUs [15], Cell/BE processors [12]
and Field Programmable Gate Arrays (FPGAs) have already shown the ability to provide remarkable
results in the high performance computing domain. The common ground for all those devices lies in
their widespread availability and programmability, thus making them perfectly suitable to be a part
of a modern desktop computer. As a result, current multi-core designs equipped with specialized
but programmable processing accelerators cause to perceive practically each desktop computer as
an individual heterogeneous system.

However, approaching the potential collaborative peak performance of these systems is not a
trivial task due to the complexity of the overall system’s architecture. In particular, the overall
system is composed of devices with different architectures, characteristics and processing potentials,
tightly coupled to build a single, but heterogeneous execution environment. This means that not only
hard-to-solve programming challenges common for every parallel system have to be dealt with, but
also several vendor-specific programming models and/or high performance libraries must usually
be employed at the same time. Moreover, the application optimization requires load balancing,
and usually relies on per-device performance modeling to provide adequate task distribution. The
above-mentioned problems are probably the major reasons why the scientific community is still
predominantly aimed on using a single device at the time and exploring their capabilities for domain-
specific computations, thus leaving the collaborative potential practically unexplored.

In this paper we tackle the problems of collaborative execution across a set of heterogenous devices
in a modern desktop system. In detail, we propose herein the Collaborative Execution Environment
for Heterogeneous Parallel Systems (CHPS) that allows to cooperatively execute a single application
by employing architecturally different processing devices, namely multi-core CPUs and GPUs. At
the device level, the proposed environment is capable of integrating the native programming models
on a per device type basis to attain the most efficient execution, such as OpenMP for multi-core
CPUs and CUDA for GPU devices. At the collaborative execution level, the CHPS relies on a task
description scheme that accommodates different execution principles for different task types, and
allows to exploit both data and task parallelism. Furthermore, the proposed environment integrates
the specific scheduling module which assigns different workload distributions to the devices thus
allowing to achieve the optimal load-balancing via exhaustive search. The proposed approach is
tested in a heterogeneous system comprising a quad core CPU and a GPU for executing two of
the most common applications for scientific and digital signal processing, namely dense matrix
multiplication and complex FFT. We show that our approach is capable of achieving significant
performance gains compared not only to a single core, but also to multi-core execution.

2 Heterogeneous Desktop Systems

Contemporary multi-core CPUs, as the integral parts of every desktop system, incorporate a col-
lection of identical processors sharing the same primary memory. Currently, AMD and Intel CPU
designs are built around the small number of individual superscalar cores that may share a single
coherent on-device cache or may have completely separate caches, as depicted in Fig. 1(a). The com-
mon practice in programming those devices anticipates the use of PThreads [6] and OpenMP [20],
which can be considered as de-facto standard for symmetric multi-core CPU architectures. The
wide acceptance of OpenMP lies in its simplicity to define and manipulate parallel tasks using a
minimal set of directives. Tasks can be specified explicitly or created automatically on reaching
the worksharing constructs, where the work inside the construct is divided among the threads and
executed cooperatively. However, OpenMP programmers still need to check for data dependencies,
data conflicts, race conditions, or deadlocks.

The large majority of scientific research efforts in the area of heterogeneous computing is target-
ing the distributed memory systems, such as clusters of computers, consisting of several intercon-
nected architectures equipped with only CPUs. The heterogeneous aspect of this type of distributed
systems is only evidenced by the presence of multi-cores with diverse computational capabilities,
vendor-specific design strategies or even architectural principles, such as different cache hierarchies.
Regardless of the level of diversity, all employed CPUs are sharing the same programming paradigms,

97



CHPS: An Environment for Collaborative Execution on Heterogeneous Desktop Systems

CONTROL

L3 CACHE

CORE
#1

CORE
#2

CORE
#3

CORE
#4

DRAM

L1 CACHE L1 CACHE L1 CACHE L1 CACHE

L2 CACHE L2 CACHE

(a) CPU architecture

DRAM

(b) GPU Fermi architecture

Figure 1: Architectural diversity of devices in an heterogeneous desktop system.

thus the collaborative execution is practically inherently supported in CPU-only heterogenous sys-
tems.

On the other hand, modern desktop computers even support a higher level of heterogeneity,
because a typical desktop system usually embraces architecturally different devices as its integral
parts, such as GPUs next to the multi-core CPUs. In contrast to the overall CPU architecture,
GPUs are massively parallel multi-threaded devices, which use hundreds of simple cores to provide
huge processing power (see Fig. 1(b). For example, NVIDIA GPUs with Fermi architecture [16] has
512 streaming processing cores integrated on a chip. Performing general-purpose computations on
a GPU require the use of specific programming models such as NVIDIA CUDA [17] or ATI Stream
Technology [4]. CUDA offers an easy-to-program C-based framework, where efficient implemen-
tations demand from a programmer to have an insight on the GPU-specific features, such as the
streaming processor array organization and the memory hierarchy composed of local, shared, and
global memories. Each kernel run in the GPU embraces the concurrent execution of thousands of
extremely lightweight threads in order to achieve efficiency. This very fine-grained data-level paral-
lelism favors throughput over latency, requiring an application with high degree of data parallelism.

At the global system level, the parallel execution paradigm on desktop computers relies on a
heterogeneous serial-parallel model, where the CPU (host) sees the underlying devices as many-core
co-processors. The host is responsible for initialization and program control, whereas the parallel
portions of the code (kernels) are physically off-loaded to the devices. This requires different roles to
be assigned to the available computational resources depending on their position and functionality,
as presented in Fig. 2. In general, the CPU is the only resource allowed to transparently access the
whole range of global memory, whereas the underlying devices perform the computations in their
own local memories using different instruction sets. This naturally designates the CPU as the global
execution controller as it has to retain the control over the complete collaborative execution on all
employed functional units.

Communication between the host and devices is performed explicitly via bidirectional intercon-
nection channels, i.e., all input and output data must be transferred from host to device memory
and vice versa. In practice, the interconnection buses between host and device have limited band-
width, thus introducing an additional overhead to the overall execution time, and even becoming
a performance bottleneck for applications with low computation to communication ratio. More-
over, the communication path between devices in off-the-shelf heterogeneous systems is restricted
by the overall architectural principle requiring the host processor as an unavoidable intermediate in
the communication path. This implies that underlying computational units are usually not free to
explicitly communicate between each other (even if they are of the same type). This host-bound com-
munication model has several major implications to the overall system usability. First of all, device
synchronization problem is almost completely supported by the host. Moreover, only a small sub-

98



International Journal of Networking and Computing

Figure 2: Architecture of the heterogeneous systems.

set of already developed parallelization methods for distributed environments can be implemented,
although the address spaces are distributed.

Due to significant architectural differences, achieving peak performance on heterogeneous desk-
top systems usually involves careful coalescing of diverse, per-device programming models and/or
vendor-provided high performance libraries. Combining those programming models to build a single
application requires the knowledge of specific device and system architectural details and forces the
entirely dissimilar programming and optimization techniques to be reconciled. Achieving an efficient
execution across multiple devices also demands complex and careful computation partitioning prior
to the actual execution. Partitioning must take into account several parameters for sustaining the
overall system performance, such as different processing capabilities, scarce memory capacities of the
computational resources, and limited bandwidth of interconnection channels. Nevertheless, certain
devices are often specialized for certain set of applications, thus partitioning should be conducted in
order to address only the devices on which the performance benefits are expected.

One can notice that significant differences at both architectural and programming model levels
exist in modern heterogeneous desktop systems, even when considering only CPU and GPU devices.
Moreover, those differences can even be wider taking into account the ability to connect other
architecturally divergent devices, such as Cell/BEs [12], FPGA boards etc. As a result, the overall
system’s heterogeneity elevates the complexity of collaborative execution challenges to the much
higher levels comparing to the CPU-only heterogeneous environments.

3 Environment for Collaborative Execution on Heterogeneous
Desktop Systems

With the aim of employing the available architecturally diverse set of devices to cooperatively execute
a single application, we present herein the CHPS collaborative execution environment. The proposed
execution environment provides the means for synergetic cross-device execution in a desktop platform
consisting of at least a multi-core CPU and a GPU, by exploiting both data and task parallelism.

As previously referred, the collaborative execution across a set of heterogeneous devices requires
to address the platform programmability issues at the very beginning. It is worth to emphasize
that our major goal is not to ease the programming individually, at the level of the device, but to
explore the ways of describing the parallelism and to provide the means for collaborative execution
between the heterogeneous devices in a desktop system. This means that the approach presented
in this section is aimed on addressing the overall platform’s programmability from the perspective
of accommodating the collaborative cross-device execution at the system level, thus tackles the
problems which are beyond the problems of the low-level on-device programming. Nevertheless, the
synergetic execution across a set of diverse devices still requires to coalesce substantially different
and vendor-specific programming models on a per device type basis.

In this paper, we advocate redefining the basic units of programming by introducing the task
abstraction. The tasks in the proposed system do not only carry the application implementation,

99



CHPS: An Environment for Collaborative Execution on Heterogeneous Desktop Systems

TASK ABSTRACTION
bool DIVISIBLE

bool AGGLOMERATIVE

JOB QUEUE PARAMETERS (int, int, int)

PRIMITIVE JOBS

HOST CODE

allocateDataHost(...)

assignDataHost(...)

executeDevice(...)

retreiveDataHost(...)

freeDataHost(...)

DEVICE CODE

startDevice(...)

host2DevTransf(...)

executeKernel(...)

dev2HostTransf(...)

stopDevice(...)

ENVIRONMENT CONFIGURATION

Figure 3: Abstract structure of the task in the unified execution model.

but they also provide the additional information substantial for their further execution, such as
the type of devices required or the environment configuration for efficient execution. The task
abstractions are capable of encapsulating the implementations on a per device type basis, which
can be expressed using the natively supported programming models and constructs. In detail, we
encourage the use of vendor-specific models as they are usually the fruitful ground to completely
explore the computational capabilities of the devices and to employ the optimization techniques
directly provided by the device manufacturers. In contrast to other approaches that propose the
construction of the new, common languages across the devices, we are rather focusing on building
the sinergizer for several reasons. First of all, when defining the common language for architecturally
different devices, only a subset of available, vendor-specific techniques is usually considered, thus
accommodating mainly the basic use of a certain device, while not being concerned with achieving the
peak performance. Moreover, the language constructs must also be constantly updated to sustain
the inclusion of emergent specialized accelerators, or to incorporate the newly available features
arising from the architectural changes in an already supported device type, e.g., features provided
by Fermi [16] regarding to the GT200 [15] GPU architecture.

Figure 3 depicts the structure of a coarse-grained task, redefined to include a set of parameters
sustaining the collaborative heterogeneous execution. At first, the tasks are extended to encapsulate
the information required to configure the execution environment regarding the available system
devices. Practically, the programmer is allowed to specify the environmental constraints of the
task implementation, e.g., when the task execution requires more than one device at the time or
when it supports only certain device types. In the proposed environment, different types of tasks
can be specified, which allows the collaborative environment to configure the execution in the most
suitable form. The tasks in the CHPS environment can be defined as Divisible and/or Agglomerative,
and the CHPS environment sustains different execution modes depending on the combination of
those two parameters. A Divisible task incorporates a set of fine-grained program portions called
Primitive Jobs. Each Primitive Job may consist of a set of functions, marked as Host and Device
Code, as shown in Figure 3. The Device Code refers to a set of functions to drive direct low level
on-device execution, whereas the Host Code embraces the necessary operations executed on the
host processor prior/after the actual device kernel execution. Primitive Jobs are practically the
only computation carriers in the system, and their concurrent execution on several devices require
separate implementations on a per device type basis. Therefore, by designating the task as Divisible,
the collaborative environment is instructed to guarantee the availability of the structures to sustain
the cooperative execution of Primitive Jobs. Those execution structures, such as Job Queues in
Figure 4, allow to organize and plan the execution of the pool of Primitive Jobs. Depending on
the implementation, the Primitive Job can be perceived as an instance of the provided application
implementation that corresponds to a single entry in the sustaining execution structure, or the
separate implementations may be provided for different structure entries. Furthermore, the task
might also be Agglomerative, if several Primitive Jobs can be grouped into one coarse-grained job,

100



International Journal of Networking and Computing

thus allowing groups of Primitive Jobs to be scheduled for execution on a device.
In detail, the following combinations of Divisible and Agglomerative parameters are permitted

when specifying the task type in the CHPS environment:

• the task designated as neither Divisible nor Agglomerative represents a single coarse-grained
task consisting of exactly one Primitive Job and is forwarded to the direct on-device execution
in its entirety according to the specified configuration parameters;

• the task which is Divisible, but not Agglomerative, consists of a set of Primitive Jobs, whose
execution requires the use of specialized execution structures, such as a pool of Primitive Jobs;
the execution structures are used to drive the data-parallel execution of the Primitive Jobs
across as set of heterogeneous devices, where exactly one pool entry corresponds to a single
Primitive Job to be executed on the available device regarding to the configuration parameters;

• Divisible and Agglomerative tasks are sharing the same structure and similar execution prin-
ciple as Divisible-only tasks, except that for this task type the several Primitive Jobs from
the specialized execution structure can be grouped together, thus assembling a single coarse-
grained job to be executed on the requested device.

It is worth to note that the combination of parameters where the task is Agglomerative, but not
Divisible, is not defined by the current implementation, as it does not make any practical sense. The
rationale behind introducing these task descriptions, using Divisible and Agglomerative parameters,
lies in a fact that all three enumerated combinations demand different execution patterns. The
non-Divisible tasks can be immediately forwarded to the on-device execution and do not require any
specialized execution structure. However, the Divisible and not Agglomerative tasks are relying on
the pool of Primitive Jobs, where each Primitive Job is executed separately. This means that the
employed devices request a single Primitive Job at the time, as soon as they have finished processing
the previously assigned Primitive Job. As a result, the complete execution requires many single
Primitive Job executions to be performed by each employed device, thus the clear benefit of using
this approach lies in its adoption of an inherent dynamic load balancing scheme. On the other
hand, Divisible and Agglomerative tasks are aimed at collaborative execution of a complete set of
Primitive Jobs at once. This means that each device is assigned with a single coarse-grain job
assembled from the requested number of Primitive Jobs, defined a priori. The benefits of using this
approach lie in the fact that there are no scheduling overheads imposed for identifying the end of the
execution, and for assigning the next Primitive Job. Moreover, in practice, the efficient utilization
of both interconnection channels and device’s computation resources highly depend on the amount
of the work assigned to the execution. Hence, by agglomerating the Primitive Jobs into one coarse-
grained job, more efficient execution is expected using this execution set-up, in comparison with
the execution of many fine-grained Primitive Jobs. However, the major drawback when using this
execution mode lies in the fact that the workload distribution between the devices can not be know
a priori, thus requires careful performance modeling of the devices and interconnection channels to
decide on the number of Primitive Jobs to accommodate as load balanced execution as possible.

Focusing on the execution environment, Figure 4 presents the high-level structural model of the
CHPS collaborative environment consisting of four main functional modules, namely: the Task
Scheduler, the Job Queue, the Job Dispatcher, and the Device Query.

The execution begins with the group of tasks entering the system. At this point it is worth to
emphasize the ability to express the task dependencies using the above-mentioned task description
scheme in the proposed environment. It respects the order in which the tasks have to be performed
in order to produce the correct overall result. Namely, the current implementation is based on the
list dependency scheme where the tasks are organized in a list and the dependencies are specified
by enumerating the preceding tasks on which the current one depends on. However, the indepen-
dent tasks, or the tasks from different applications, are free to be enqueued without any preceding
constraint thus accommodating their independent parallel execution.

The Task Scheduler is responsible for examining the list of the tasks in order to detect the
independent task(s) which can be executed next in the system according to several criterions. First
of all, the specified conditions from the task configuration parameters must be satisfied, including

101



CHPS: An Environment for Collaborative Execution on Heterogeneous Desktop Systems

TASK SCHEDULER

JOB QUEUE DEVICE QUERY

 devices

tasks

JOB DISPATCHER

primitive job(s)info

DATA PARALLEL 
EXECUTION

TASK PARALLEL 
EXECUTION

Figure 4: Structure of the unified execution model.

the availability of the requested devices. Secondly, the execution of all previous tasks on which the
current task is dependent must be finished, i.e., the task dependencies are satisfied.

As previously referred, depending on the specified type of the selected task, the actual execution
is performed using different execution principles.

• For not Divisible tasks:

The selected not Divisible task is simply forwarded to the Job Dispatcher which assigns a
requested device to the task and initiates on device execution by launching the kernel calls.
Moreover, the Job Dispatcher is also responsible to track the status and control the overall
execution of all started kernels. Practically, not Divisible tasks require the execution of a
coarse-grain Primitive Job represented by a single entry Job Queue.

At the same time, the Task Scheduler continues to examine the list of tasks, and in case that all
the prerequisites are satisfied, it is free to forward to the Job Dispatcher all independent tasks.
In this case, a large number of independent tasks can be running in the system simultaneously,
thus accommodating the task level parallelism.

• For Divisible tasks:

If the selected task is Divisible, its Primitive Jobs are arranged into the Job Queue structure
according to the parameters specified in the task properties. The current implementation
permits the grid organization of the Primitive Jobs inside the Job Queue with grid size spanning
to up to three dimensions. However, the functionality of the Job Dispatcher differs according
to the type of the selected task, i.e., if the Divisible task is Agglomerative or not.

– For Divisible, but not Agglomerative tasks:
The Job Dispatcher sends for execution, to each requested and available device, a single
Primitive Job from the Job Queue. Upon detecting the completion of the processing on
any of the employed devices, the Job Dispatcher examines the Job Queue to find the next
not processed Primitive Job and forwards it to be executed on the device. This single
Primitive Job assigning scheme is continuing until all Primitive Jobs inside the Job Queue
are processed.

– For Divisible and Agglomerative tasks:
The Job Dispatcher is responsible to agglomerate the Primitive Jobs from the Job Queue
into the coarse-grained workloads to be dispatched for execution on each requested de-
vice. The agglomeration process is instructed by the workload sizes specified in the task
configuration parameters on a per device basis. Generally, this execution scheme is aimed
on processing a complete set of Primitive Jobs at once and on all specified devices. How-
ever, in case that there are still not processed Primitive Jobs in the Job Queue after

102



International Journal of Networking and Computing

the first run, the Job Dispatcher repeats the agglomeration procedure on the rest of the
unexamined Primitive Jobs and forwards the coarse-grained tasks to each of the devices
once again, until the all Primitive Jobs are processed.

As one can notice, in the proposed environment, the different portions of a single task can also
be executed on several devices simultaneously, thus accommodating data level parallelism.
However, it is worth to emphasize that the current implementation also allows the Primitive
Jobs to include the parallel sections inside the Device Code, thus allowing a single Primitive
Job to be executed using nested parallel paradigm.

Regardless of the taken execution path, the Device Query module interacts with all other mod-
ules in the system and provides a mechanism to examine and identify all underlying devices which
are currently available in the system. It also maintains a specific data structure to hold the relevant
information related to each device, such as resource type, status, device memory management and
performance history.

Furthermore, as the developed platform is capable of storing the task performance history for
each device, it can be re-used to extend the Job Dispatcher to perform the agglomerations of the
Primitive Jobs to maximize the performance benefits of the collaborative execution. The platform
can also be configured to run in an exhaustive search mode, where the Parallel Jobs are executed
on the requested devices with varying workloads, in order to obtain the full performance models
of employed devices. The obtained performance models can be used to find the best mapping and
decide on optimal load balancing scheme in the systems where multiple runs of the same kernels are
requested. Finally, for devices that support concurrency between the memory transfers and kernel
execution, such as GPU devices with streaming capabilities, the Job Dispatcher module is extended
to support the overlapping of the communication with the actual on-device computation by carefully
scheduling the Primitive Jobs for the Divisible tasks using the streaming technique.

4 Programming the CHPS Environment for Matrix Multi-
plication and 3D FFT

In order to demonstrate the practical usability of the presented approach, we have implemented
two of the most commonly used applications in linear algebra and digital signal processing, namely
dense matrix multiplication and 3D complex fast Fourier transform. Both applications encompass
data parallelism which makes them perfectly suited for providing a detailed insight on the attainable
performance in heterogeneous commodity desktop systems. Applications are implemented following
the fundamental principles of the CHPS environment, presented in Section 3.

4.1 Matrix Multiplication

The general method for performing multiplication of two dense matrices, A and B producing matrix
C, is based on a block decomposition, where M × K, K × N , and M × N matrices are divided
into sub-matrices of an P × R, R × Q, and P × Q size, respectively. As shown in Figure 5, each
sub-matrix Ci,j requires the following computation:

Ci,j =
K/R∑
l=0

Ai,l × Bl,j (1)

where 0 ≤ i ≤ M/P and 0 ≤ j ≤ N/Q.
In order to perform the matrix multiplication using this method in the CHPS environment, a

three dimensional Job Queue has to be created of a size M/P ×N/Q×K/R. Therefore, each (i, j, l)
tuple from the Job Queue will direct the execution of the corresponding Primitive Job in order to
produce the requested Ci,j sub-matrix. As it can be noticed, direct implementation of the general
multiplication in current heterogeneous desktop systems embraces huge drawbacks concerning the

103



CHPS: An Environment for Collaborative Execution on Heterogeneous Desktop Systems

A

R

C

 B

M M

N

K
K

P

Q

R

Figure 5: Parallelization of the general matrix
multiplication.

A C

 B

M M

N

K

K

Q

Figure 6: Communication aware matrix multi-
plication.

number of data transfers needed to be preformed. Nevertheless, the number of data transfers can
be reduced by declaring a matrix multiplication task as Divisible and Agglomerative, thus supplying
a single device with more than one sub-matrix multiplication.

However, careful selection of the P , Q, and R (P = M , K = R) parameters allows derivation of
the algorithm which accommodates further memory transfer reduction to only N/Q transfers, thus
providing the possibility to attain the system’s peak performance (see Figure 6). In order to perform
optimized matrix multiplication in the CHPS environment, a single matrix multiplication task is
declared as Divisible and Agglomerative, and the Primitive Jobs are grouped into one dimensional
Job Queue of a size N/Q. Prior to actual kernel execution, each computational device is supplied
with the A matrix, which is followed by the Primitive Jobs’ agglomeration and distribution according
to the specified scheme in the task configuration parameters. Nevertheless, this implementation is
bound to the memory capacities of the requested devices, which means that the device with the
smallest amount of global memory sets the algorithm’s upper bound.

To lessen those restrictions, we have also implemented the block matrix multiplication using the
Horowitz scheme [9], which we have modified to include the awareness of the memory limitations
on a per-device basis. The memory aware Horowitz algorithm is built for the cases where the sizes
of A, B and C matrices surpass the memory capacities of certain devices. Then the overall matrix
multiplication can be performed by subdividing the problem into several multiplications of the block
matrices, with sizes that respect the global memory limitations of each employed device, as depicted
in Figure 7. The recursive HorowitzMA Function presents the basic functionality of the algorithm.
The matrices A, B and C are recursively subdivided into matrix blocks until reaching the size to
perform matrix multiplication on each requested device (mem size represents the minimum global
memory size between all employed devices). In particular, partitioning of all three matrices requires
to reorganize the overall execution, such that eight block matrix multiplications are performed after
the optimal sub-block size is determined, followed by four sub-matrix additions for each level of
recursion applied, as shown in HorowitzMA Function. After the partitioning of the matrices is
finished and the sub-matrix size is decided, the actual collaborative execution is performed using
the previously mentioned optimized matrix multiplication algorithm, designated as CHPS mat mul
in HorowitzMA Function.

The implementation of the memory aware Horowitz algorithm in the CHPS environment starts by
forming the task list consisting of matrix multiplication kernels. In case when the level of recursion
is equal to one, the implementation requires to enqueue exactly eight multiplication tasks. Each
task is defined as Divisible and Agglomerative with assigned one dimensional Job Queue. As a result,
all eight matrix multiplications are performed using the full potential of an heterogeneous desktop
system, and scheduled by the Task Scheduler according to the specified requirements and device
availability. It is worth noting that the overall architectural principle of the heterogeneous desktop

104



International Journal of Networking and Computing

C11 C12

C21 C22

B11

A11 A12

A21 A22

B12

B21 B22

Figure 7: Parallelization of matrix multiplica-
tion for large matrices.

Function HorowitzMA(in A, in B, out C)
if
(size(A) + size(B) + size(C)) < mem size
then

C = CHPS mat mul(A, B)
else

HorowitzMA (A11, B11, P0)
HorowitzMA (A12, B21, P1)
HorowitzMA (A11, B12, P2)
HorowitzMA (A12, B22, P3)
HorowitzMA (A21, B11, P4)
HorowitzMA (A22, B21, P5)
HorowitzMA (A21, B12, P6)
HorowitzMA (A22, B22, P7)
C11 = P0 + P1

C12 = P2 + P3

C21 = P4 + P5

C22 = P6 + P7

end

systems demands to store the produced C matrix only into the host’s memory space. Therefore, the
final additions are performed only by the host processor.

4.2 3D FFT

Starting from a general definition of a 3D discrete Fourier transform as a complex function H(n1, n2, n3)
for a given function of the same type h(k1, k2, k3), both defined over the tree-dimensional grid
0 ≤ k1 ≤ N1 − 1, 0 ≤ k2 ≤ N2 − 1, 0 ≤ k3 ≤ N3 − 1,

Wj = e
−2πi

kjnj
Nj (2)

H(n1, n2, n3) =
N3−1∑
k3=0

N2−1∑
k2=0

N1−1∑
k1=0

W1W2W3h(k1, k2, k3) (3)

one can notice three distinct implementation possibilities in parallel environments, namely:

H = FFT1D(FFT1D(FFT1D[h])) (4)
= FFT1D(FFT2D[h]) (5)
= FFT2D(FFT1D[h]). (6)

Method 4 requires 1D fast Fourier transforms to be applied on each dimension of the original
function, whereas methods 5 and 6 demand 2D FFT application on two dimensions accompanied by
1D FFT transform along the remaining dimension of the original function. The major drawback in
parallel implementation of 3D FFT is induced by the inevitable transpositions of the input data be-
tween FFTs applied on different dimensions. Moreover, after executing the final FFT, an additional
transposition is required to restore the original data layout. Figure 8 depicts the complete process
of performing 3D FFT when method 5 is employed, as the best suited for parallelization due to its
characteristics.

Implementing method 5 for 3D FFT in the CHPS execution environment requires to form a list of
three different and dependent tasks to be scheduled for execution in the system. First task is assigned
with 2D FFT batch execution and declared as Divisible and/or Agglomerative with the 1D Job Queue
of a maximum size N1. Once the first task has finished its execution, the 3D matrix needs to be

105



CHPS: An Environment for Collaborative Execution on Heterogeneous Desktop Systems

TRANSPOSITION

1D FFT2D FFT

TRANSPOSITION
N1

P1

N3
N1

N2 P2

N3
P3

N3

N1

N2 N2

Figure 8: 3D FFT procedure.

transposed to allow the execution of the 1D FFT batches over the third dimension. Depending of
the matrix storage scheme, and used transposition method (in-situ/out-of-place, parallel/sequential),
second task can be declared with a suitable combination of Divisible and Agglomerative flags. As
soon as transposition is performed, the third task is allowed to proceed to the Job Dispatcher. As in
the case of 2D FFTs, 1D fast Fourier transform over the third dimension requires the task to be set
as Divisible and/or Agglomerative with the 1D Job Queue of a maximum size N2 ×N3. If needed, a
fourth transposition task can be also added in order to bring back the original data layout.

5 Experimental Results

The performance of the proposed CHPS environment for heterogeneous desktop systems is evaluated
in the CPU+GPU system consisting of an Intel Core 2 Quad Q9550 processor, 12 MB L2 cache,
running at 2.83 GHz, and 4 GB of DDR2 RAM as the CPU, and an NVIDIA GeForce 285 GTX with
1.476 GHz of core frequency and 1 GB of global memory as the GPU. Devices are interconnected
via Memory Controller Hub with 1.33 GHz Front Side Bus to the CPU, whereas PCI Express 2.0
16x is used at the GPU side.

Focusing on the collaborative environment implementation, the system is built using the OpenMP
[20], and CUDA [17] programing model for NVIDIA GPUs. Vendor-provided high performance
libraries are used for assessing the peak performance of computational units, namely the Intel Math
Kernel Library (MKL) 10.2 [11] for the CPU, and CUBLAS 3.1 [17] and CUFFT 3.1 [17] libraries for
the GPU with CUDA 3.1 beta driver. The enlisted libraries serve as the kernel providers for task’s
Primitive Jobs in their Device Code modules, namely for dense matrix multiplication and complex 2D
and 1D batch fast Fourier transformations. Both implementations involve double precision floating
point arithmetic and employ offered optimization techniques without altering the library sources,
such as: vector intrinsics and thread affinity for MKL kernels, and pinned memory allocation in
combination with streaming for GPUs.

All experiments are conducted on Linux Open Suse 11.1, using task, data or nested parallelism
if permitted by the implementation. For data parallel executions, the CHPS environment was set
to operate in the exhaustive search mode over the number of Primitive Jobs in order to achieve
load balanced execution. Correspondingly, the obtained results provide a real insight on the high-
performance computing potentials of the tested desktop system. The experiments are conducted
to exploit collaborative capabilities of the platform by using different execution set-ups, and double
precision floating point operations per second (FLOPS) is adapted as a performance metric, to
provide a fair comparison between heterogeneous devices’ performance.

5.1 Matrix Multiplication

In order to evaluate the performance of dense matrix multiplication in the tested desktop envi-
ronment, several tests were conducted using double precision floating-point arithmetic on square
matrices with varying sizes (M = K = N) and using the different execution set-ups. The results
obtained are presented in Figures 9 and 10. For the matrix sizes which were not limited by the
global memory of the GPU, the optimized implementation from Section 4 was used, whereas for the

106



International Journal of Networking and Computing

0	  

20	  

40	  

60	  

80	  

100	  

120	  

1024	   2048	   3072	   4096	   5120	   6144	   7168	   8192	   9216	   10240	  

G
FL
O
PS
	  

Matrix	  Size	  [M	  =	  K	  =	  N]	  

1	  CORE	   2	  CORES	   4	  CORES	   1	  GPU	   1	  GPU	  [KERNEL]	  

1	  GPU	  +	  1	  CORE	   1	  GPU	  +	  2	  CORES	   1	  GPU	  +	  3	  CORES	   1	  GPU	  +	  4	  CORES	  

Figure 9: Matrix multiplication performance without nested parallelism.

cases when matrices could not fit into the GPU global memory, the implementation was based on
the modified Horowitz scheme. In this case, the largest executable problem on the GPU was for the
matrices with less than 5120 elements in each dimension.

For matrices that fit into GPU global memory, the results are obtained using an exhaustive search
over the combinations of workload distribution for both devices in order to find the optimal load
balancing scheme. The acquired schemes are then re-used to perform the memory-aware Horowitz
multiplications, which is evidenced by a slight performance drop for the 6144 test case (eight matrix
multiplications were performed using the 3072 matrix kernels, thus retaining their performance). The
results presented in Figure 9 are obtained by combining the execution in the GPU with the execution
in different numbers of CPU cores, where each core independently executes the assigned problem
portions. As it can be seen, the proposed CHPS environment is capable of outperforming the GPU
only execution and the multicore execution using the full parallel CPU capacities (four cores) for all
tested cases. Moreover, with the proposed collaborative execution model and careful parallelization
methods, we were able to retain the high performance in our environment even for the test cases which
are generally not executable on the GPU device, thus demonstrating the full platform’s synergetic
potential. As expected, the best results are obtained using the GPU and three CPU cores, where
the fourth core is completely devoted to control the execution on the GPU. The rationale behind
this behavior is not related with the CHPS environment, but with the architecture of the employed
CPU cores which do not support the Intel Hyper-Threading Technology [10]. In detail, executing
the application with the number of threads larger than the number of cores does not usually provide
performance benefits on this type of multi-core architecture. This is mainly due to the fact that
the unsupported thread-level parallelism at the core level usually implies the execution serialization
between the multiple threads in a single core. Correspondingly, the collaborative execution in
the tested environment when employing all four CPU cores and the GPU requires to conduct the
execution using the five threads on the four cores, and thus does not outperform the collaborative
execution with three CPU cores and the GPU for the above-mentioned reasons.

The same set of tests was repeated when employing the MKL’s parallel implementations for the
CPU execution, as shown in Figure 10. The number of nested threads was varied according to the
number of available threads, thus the execution in one thread was expanded to two (1x2) or four (1x4)
threads, or when two cores were working in parallel with the remaining two cores (2x2). The obtained
results show the possibility to outperform both the GPU only and the CPU only executions even for
nested parallelism. However, we do not encourage neither execution which combines GPU and nested
parallel execution in the CPU, nor overloading the CPU with the number of threads greater than
the number of cores. The practical evaluations show very high performance fluctuations for memory

107



CHPS: An Environment for Collaborative Execution on Heterogeneous Desktop Systems

0	  

20	  

40	  

60	  

80	  

100	  

120	  

1024	   2048	   3072	   4096	   5120	   6144	   7168	   8192	   9216	   10240	  

G
FL
O
PS
	  

Matrix	  Size	  [M	  =	  K	  =	  N]	  

1	  CORE	   2	  CORES	   4	  CORES	   1	  GPU	  

1	  GPU	  [KERNEL]	   1	  GPU	  +	  1x2	  CORES	   1	  GPU	  +	  1x4	  CORES	   1	  GPU	  +	  2x2	  CORES	  

Figure 10: Matrix multiplication performance using nested parallelism.

transfers between the host and the device, when the CPU operates in one of the mentioned modes.
This is due to the limited ability of the memory subsystem to serve both Front Side Bus (FSB) and
PCI Express requests at the same time, thus making the execution on the device unpredictable. In
this particular case, this impact is not significant due to the high computation to communication
ratio of the matrix multiplication. This can be evidenced by the narrowing gap between the GPU
kernel performance (1 GPU [Kernel]), and the GPU performance when the bidirectional transfers
are included (1 GPU ). For all test cases, the GPU kernel performance is predominantly constant,
which demonstrates the capability of CUBLAS implementations to efficiently employ the GPU
architecture for matrix multiplication. On the other hand, the overall GPU performance (1 GPU )
increases with the problem size and approaches the performance of the 1 GPU [Kernel], which clearly
shows that the impact of memory transfers becomes less significant when compared to the overall
computational complexity of the matrix multiplication for bigger problem sizes. It is also worth to
mention that the reduced communication impact is related to the size of memory transfers capable
to efficiently use the bandwidth of the interconnection PCI Express channel. In this particular case,
all the transfers above 4KB were capable of providing good performance, which proves that the
concept of grouping the memory transfers generally turns into performance benefits. Still, deriving
the general performance metric for optimal transfer size is not really possible due to the transfer’s
high per-system and per-application dependencies.

Furthermore, it is worth to emphasize that the high cost of finding the optimal load balancing
using the exhaustive search over the different number of Primitive Jobs restricts its application to
an extensive range of the matrix problem sizes. However, we have provided an extension of the Job
Dispatcher module to reuse the information from the performance history in order to make better
scheduling decisions of the Primitive Jobs for devices that allow concurrency between the memory
transfers and kernel execution, such as GPU devices. Namely, the performance history can provide
an insight on the exact application communication and execution requirements, which are further
used by the Job Dispatcher to make decisions on the number of Primitive Jobs to be scheduled in
each stream, such that the communication is completely overlapped by the computation in the GPU.
This approach is tested for the multiplication of matrices with M = N = K = 4096, and the results
obtained show the average collaborative performance improvement of about 3.9% when compared
to the results depicted in Figure 9.

108



International Journal of Networking and Computing

0	  

2	  

4	  

6	  

8	  

10	  

12	  

14	  

64x64x128	   64x64x256	   128x128x128	   128x128x512	   256x256x256	   256x256x512	   256x256x1024	  

G
FL
O
PS
	  

Matrix	  Size	  
1	  GPU	  +	  1	  CORE	   1	  GPU	  +	  2	  CORES	   1	  GPU	  +	  3	  CORES	   1	  GPU	  +	  4	  CORES	   4	  CORES	   1	  GPU	  [STREAMED]	  

Figure 11: 2D FFT batch results without nested parallelism.

5.2 3D FFT

According to the remarks given in Section 4, we implemented double-precision complex 2D and 1D
batch FFTs using the proposed CHPS environment. The tests were mainly conducted to evaluate
the benefits of performing 3D FFT in the collaborative environment, through the evaluation of those
batch executions, as major steps to calculate the compete 3D transform.

In contrast to matrix multiplication, the FFT operation embraces significantly higher communi-
cation to computation ratio. In order to reduce the impact of memory transfers to the overall exe-
cution time, several optimization techniques are supported by the current implementation. Firstly,
data is allocated in special memory regions, referred as page-locked or pinned memory, to reduce
the pre-transfer overheads at the CPU side. Secondly, the CUDA streaming technology is employed,
at the GPU side, to sustain the concurrency between the memory transfers and kernel execution,
which is preceded by an additional exhaustive search to determine the number of streams capable
of achieving the efficient overlap of the communication with computation.

The results obtained for the 2D FFT batches are presented in Figures 11 and 12. The 2D
FFT execution without nested parallelism shows that performance gains can be achieved in the
collaborative environment regarded to the execution in both four CPU cores and the GPU. However,
the results obtained for nested parallel executions in Figure 12 are highly unstable. This is mainly
due to the previously referred incapability of memory system to serve both FSB and PCI Express
requests, but also due to the volatile performance of the MKL kernels and the overall system load.

0	  

2	  

4	  

6	  

8	  

10	  

12	  

64x64x128	   64x64x256	   128x128x128	   128x128x512	   256x256x256	   256x256x512	   256x256x1024	  

G
FL
O
PS
	  

Matrix	  Size	  
1	  GPU	  +	  1x2	  CORES	   1	  GPU	  +	  1x3	  CORES	   1	  GPU	  +	  1x4	  CORES	   1	  GPU	  +	  2x2	  CORES	   4	  CORES	   1	  GPU	  [STREAMED]	  

Figure 12: 2D FFT batch results with nested parallelism.

109



CHPS: An Environment for Collaborative Execution on Heterogeneous Desktop Systems

0	  

1	  

2	  

3	  

4	  

5	  

6	  

7	  

8	  

64x64x128	   64x64x256	   128x128x128	   128x128x512	   256x256x256	   256x256x512	  

G
FL
O
PS
	  

Matrix	  Size	  
1	  GPU	  +	  1	  CORE	   1	  GPU	  +	  2	  CORES	   1	  GPU	  +	  3	  CORES	   1	  GPU	  +	  4	  CORES	   4	  CORES	   1	  GPU	  

Figure 13: 1D FFT batch results without nested parallelism.

On the other hand, results obtained for the 1D FFT batch execution, presented in Figure 13, show
that collaborative execution is favorable for certain problem sizes, whereas for others it will be
beneficial to retain the execution in the CPU-only environment.

It is worth to emphasize that the achieved performance for FFT batches does not depend neither
on the implementation of the proposed CHPS environment nor the limited computational capa-
bilities of the GPU device. The limiting factor for the overall FFT batch performance lies in the
communication-bound nature of the batch FFT algorithm, where the time taken to perform the
memory transfers dominates the overall execution time. Figure 14 depicts the performance when
calculating 2D FFT batches in the GPU without taking into account the memory transfers (GPU
Kernel), and when the memory transfers are included into the overall GPU performance for standard
(1 GPU) and optimized (1 GPU [streamed]) implementations. In contrast to matrix multiplication,
the performance of 2D FFT batches when the data transfer time is included, does not follow the
trends of the GPU kernel performance, which clearly revels that the communication has a higher
impact to the overall preference in comparison to the computation. Moreover, a slight overall per-
formance improvement can also be seen for larger problem sizes, which is mainly due to the efficient
utilization of the PCI Express bandwidth by larger transfers. Therefore, the results reveal that the
current bottleneck for executing the FFT lies in a limited interconnection bandwidth between host
and device, and not in the computational capabilities of the GPU device.

Finally, taking into account that the obtained execution values must be extended to include the

0	  

5	  

10	  

15	  

20	  

25	  

30	  

64x64x128	   64x64x256	   128x128x128	   128x128x512	   256x256x256	  

G
FL
O
PS
	  

Matrix	  Size	  

4	  CORES	   1	  GPU	  [STREAMED]	   1	  GPU	  [KERNEL]	   1	  GPU	  

Figure 14: 2D FFT memory transfer impact.

110



International Journal of Networking and Computing

time needed to perform the matrix transpositions, the collaborative execution of the complete 3D
FFT in the tested system, and for the evaluated problem sizes, is not capable of providing significant
performance benefits.

6 Related Work

Recent research efforts related to the heterogenous commodity desktop systems are mainly focused
on exploiting the computational capabilities of the devices, but from the perspective of using a
single device at a time to perform domain-specific computations. Occasional attempts to unify
the functional resources into a collaborative execution environment are generally twofold. One
approach to accomplish the execution unification is to introduce high-level hybrid programming
models and languages, such as OpenCL [13], RapidMind [22], Stanford’s Brook [5], and Google’s
PeakStream [21], or to develop the compiler frameworks to sustain the collaboration, e.g. HMPP [7],
MCUDA [23], StarPU [1], GPUSs [2] or OpenMP to GPGPU [14].

Another strategy, encouraged by our current implementation, anticipates the low-level integration
of highly optimized and vendor-specific libraries to accommodate not only high performance, but
also finest level of application tuning and control. Recent works adopting this strategy [19, 3, 18, 8]
are predominantly focused on performance and memory transfer modeling in order to find an optimal
mapping for the underlying computing devices. Although a large set of obtained experimental results
allows us to derive a model of this kind, this model will certainly have a questionable practical
importance due to its high per-system and per-application nature.

Studies on matrix multiplication in the CPU+GPU environments [19, 3, 8], are mainly oriented
on reaching the peak performance, thus restricting the implementation to the optimized algorithm
for small matrix sizes as presented in Section 4. Although the potential to attain high performance
using this approach is undeniable and confirmed by the results in Section 5, its practical use is
limited to a finite set of problem sizes due to high per-device memory demands. In order to provide
a support for larger problem sizes, in this paper we propose more demanding approaches, i.e., the
memory-aware Horowitz matrix multiplication algorithm which lessens the memory requirements by
appropriate selection of the execution parameters.

Focusing on 3D FFT algorithm, to the best of our knowledge there are no present studies dealing
with its implementation and evaluation in heterogeneous desktop systems. Also, Ogata et. al. [18]
agree on the lack of the studies in this area, when implementing 2D FFT algorithm in a CPU+GPU
environment.

Moreover, the proposed CHPS environment introduces several principles which are not present
in the current state-of-the-art approaches, such as flexible task description scheme, which allows
to configure the execution environment according to the task type. The task abstractions and
user defined per-task configuration parameters allow different task granularities to be executed in
the system, thus providing the flexible computation partitioning schemes. The developed platform
is also capable of storing the task performance history for each device, which can be re-used to
extend the Job Dispatcher to perform the agglomerations of the Primitive Jobs in a manner to
maximize the performance benefits of the collaborative execution. Furthermore, the platform can
also be configured to run in an exhaustive search mode, where the Parallel Jobs are executed on
the requested devices with varying workloads, in order to obtain the full performance models of
employed devices. The obtained performance models can be used to find the best mapping and
decide on optimal load balancing scheme in the systems where multiple runs of the same kernels are
required. Finally, for devices that support concurrency between the memory transfers and kernel
execution, such as GPU devices with streaming capabilities, the Job Dispatcher module is extended
to support the overlapping of the communication with the actual on-device computation by carefully
scheduling the Primitive Jobs for the Divisible tasks.

111



CHPS: An Environment for Collaborative Execution on Heterogeneous Desktop Systems

7 Conclusions

Nowadays commodity computers are powerful heterogeneous systems that are capable of sustaining
a significant computational power when employing the full set of available processing units. In
this work we propose the CHPS environment which allows to perform the collaborative execution of
parallel applications for heterogeneous desktop systems, by exploiting both task and data parallelism.
The environment encapsulate different methodologies for collaborative execution depending on the
type of the tasks to execute, which are defined by the proposed task description scheme. At the
device level, the CHPS environment allows to express parallelism via native programming models,
such as OpenMP for the multi-core CPUs or CUDA for GPU devices.

To demonstrate its usability, the proposed framework was programmed to cooperatively compute
matrix multiplication, and the main steps for calculating 3D fast Fourier transform, i.e., 2D and
1D FFT batches. The obtained experimental results show that, when using the proposed approach,
significant performance improvements can be achieved for matrix multiplication in quad-core CPU
and GPU environment, whereas the available interconnection bandwidth between the devices limits
the performance of FFT batches.

Future developments are aimed on heterogeneous desktop systems with a higher degree of hetero-
geneity, such as multi-GPU and/or Cell-based environments. Moreover, our future research interests
will be focused on reducing the cost of building the full performance models via exhaustive search
to find the optimal load balancing scheme. Namely, we are currently investigating the possibilities
of extending the CHPS to make dynamic load balancing decisions with a given accuracy by relying
on the partial performance models of heterogeneous devices.

References

[1] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A Unified Platform for
Task Scheduling on Heterogeneous Multicore Architectures. Concurrency and Computation:
Practice and Experience, Euro-Par 2009 best papers issue, 2010.

[2] E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta, R. Mayo, and E. S. Quintana-Ort́ı. An
extension of the StarSs programming model for platforms with multiple GPUs. In Euro-Par,
pages 851–862, 2009.

[3] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, and E. S. Quintana-Orti. Evaluation and
tuning of the level 3 CUBLAS for graphics processors. In Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on, pages 1–8, April 2008.

[4] A. Bayoumi, M. Chu, Y. Hanafy, P. Harrell, and G. Refai-Ahmed. Scientific and engineering
computing using ATI Stream Technology. Computing in Science Engineering, 11(6):92 –97,
nov.-dec. 2009.

[5] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan. Brook
for GPUs: Stream computing on graphics hardware. ACM TRANSACTIONS ON GRAPHICS,
23:777–786, 2004.

[6] D. R. Butenhof. Programming with POSIX threads. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1997.

[7] R. Dolbeau, S. Bihan, and F. Bodin. HMPP: A hybrid multi-core parallel programming envi-
ronment. In Workshop on General Processing Using GPUs, 2006.

[8] M. Fatica. Accelerating linpack with CUDA on heterogenous clusters. In GPGPU-2: Proceed-
ings of 2nd Workshop on General Purpose Processing on Graphics Processing Units, volume
383, pages 46–51, New York, NY, USA, 2009. ACM.

[9] E. Horowitz and A. Zorat. Divide-and-conquer for parallel processing. Computers, IEEE
Transactions on, C-32(6):582 –585, jun. 1983.

112



International Journal of Networking and Computing

[10] Intel. Intel Hyper-Threading Technology, October 2010.
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm.

[11] Intel. Intel Math Kernel Library Reference Manual, March 2010. Version 10.2.

[12] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy. Introduction
to the Cell multiprocessor. IBM Journal of Research and Development, 49(4.5):589 –604, jul.
2005.

[13] Khronos OpenCL Working Group. OpenCL Specification, October 2009. Version 1.0.

[14] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: A compiler framework for auto-
matic translation and optimization. In PPoPP ’09: Proceedings of the 14th ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages 101–110, New York, NY,
USA, 2009. ACM.

[15] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A unified graphics and
computing architecture. Micro, IEEE, 28(2):39–55, May 2008.

[16] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi.
White paper, Version 1.1, 2009. Available online (22 pages), http://www.nvidia.com/content/
/PDF/fermi white papers/NVIDIA Fermi Compute Architecture Whitepaper.pdf.

[17] NVIDIA Corporation. NVIDIA CUDA - Compute Unified Device Architecture Programming
Guide, October 2010. Version 3.1.

[18] Y. Ogata, T. Endo, N. Maruyama, and S. Matsuoka. An efficient, model-based CPU-GPU
heterogeneous FFT library. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on, pages 1–10, 2008.

[19] S. Ohshima, K. Kise, T. Katagiri, and T. Yuba. Parallel processing of matrix multiplication
in a CPU and GPU heterogeneous environment. In In 7th International Meeting on High
Performance Computing for Computational Science (VECPAR06), pages 41–50, 2006.

[20] OpenMP Architecture Review Board. OpenMP Application Program Interface, May 2008. Ver-
sion 3.0.

[21] PeakStream. PeakStream Stream Platform API: C++ Programming Guide, 2007. Version 1.0.

[22] Rapidmind. Rapidmind, August 2009. http://www.rapidmind.net.

[23] J. Stratton, S. Stone, and W.-M. Hwu. MCUDA: An efficient implementation of CUDA kernels
for multi-core CPUs. In Jos Amaral, editor, Languages and Compilers for Parallel Computing,
volume 5335 of Lecture Notes in Computer Science, pages 16–30. Springer Berlin / Heidelberg,
2008.

113


