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Abstract

This paper presents a real-time FPGA implementation of the posterior system state esti-
mation in dynamic models, which is developed using particle filter algorithm. Specially, our
system is constructed by parallel resampling (FO-resampling) algorithm on a stream-based ar-
chitecture. To be precise, the resampling is accomplished in a valid pixel area of an input image
frame while prediction and update of particles are performed in a synchronization region, thus
our approach achieves realtime performance of 60 fps for VGA images, synchronized with the
camera pixel throughput without using any external memory devices. Through evaluation with
an object tracking benchmark video, the tradeoff relationship between tracking quality and the
number of particles is analyzed to find an appropriate hardware parameters. In addition, we
address improvement of resource utilization for our particle filter architecture, especially by
using a higher clock frequency to reuse hardware resources in a time sharing manner. The
implementation experiments reveal that the proposed approach allows the original design to be
fitted in a smaller FPGA chip. However, we also demonstrate this size reduction approach has
an overhead of 2.7 to 3.0 times power consumption compared to original designs with a slow
clock frequency.

Keywords: particle filter, FPGA, stream-based architecture, parallel resampling

1 Introduction

Recent technological developments regarding the object tracking have led to many computer vision
applications such as robotics, video surveillance, biomedical engineering, etc. According to the fil-
tering problems in high-dimensional space, particle filters can trace the object well and enable a
fully nonlinear and non-Gaussian analysis step whereas Kalman filters are untraceable. Moreover,
the particle filter has become popular among the nonparametric filters in marker-less tracking ap-
plications. Study of real-time processing for camera image using stream processing on FPGAs is
also popular to fulfill the demands for fast and robust object tracking with low energy consumption.
Hence, implementation of the particle filter in stream processing is a promising approach for effective
object tracking systems. On the other hand, the resampling operation is the bottleneck in real-time

0The preliminary version of this paper has been presented at the Fourth International Symposium on Computing
and Networking (CANDAR 2016) [1].
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particle filter implementation [2, 3]. Difficulty of parallel resampling comes from it needs information
of all particles and thus computational dependency arises. To cope with this problem, the FPGA
optimized resampling (FO-resampling) [4] has been proposed, where virtual particles are randomly
generated around the real particle to avoid the elimination of real particles with small weights.
Although effectiveness of FO-resampling method has been shown with mathematical models [4],
attempts to combine the FO-resampling with stream processing have not been addressed.

With the deep-pipelined stream-oriented image processing architecture, we can achieve a real-
time throughput at a relatively low clock frequency without requiring any external memories. We
have already shown such an approach is of benefit for a variety of image applications in terms of
performance and power consumption [5, 6, 7, 8]. In this paper, we propose and implement a stream-
based architecture of a particle filter based on FO-resampling method. In addition, we compare
four kinds of FPGA implementation using the different resource usages and clock frequencies for the
purpose of achieving compact hardware architecture. The major contributions of this paper include:

• A deep pipelined stream architecture of a particle filter with FO-resampling is proposed.

• Tracking quality of a real-time object tracking system based on the proposed architecture is
evaluated and compared with a conventional multinomial resampling approach.

• The performance and resource utilization of FPGA implementation of the proposed architec-
ture are evaluated.

• Comparative discussion on implementation alternatives with improved area efficiency is pre-
sented in terms of the hardware amount and power consumption.

The rest of the paper is organized as follows. Section 2 surveys related work on the efficient
implementation of particle filters. Section 3 outlines the algorithm of particle filter. The imple-
mentation of the system in detail with three steps: prediction, likelihood calculation and parallel
resampling are described in Section 4. Section 5 shows the evaluation results and discussion on our
first implementation. Section 6 discusses the improvement of the proposed architecture to fit the
design in a smaller FPGA. Finally, we draw some conclusions and describe the scope of the future
work in Section 7.

2 Related Work

Since the object tracking plays a part in image processing and computer vision systems, fast and
robust real-time image processing of non-rigid objects becomes a performance bottleneck. For this
reason, image-based features for particle filters using color histogram were introduced by [9]. Particle
filtering [10] approximates the density directly as a finite number of samples whereas the extended
Kalman filter cannot approximate the probability density without a Gaussian. The color-based par-
ticle filter enables an embedded implementation in [11]. However, the parallel implementation does
not offer in their tracking system. Many parallel resampling methods have been applied to FPGA-
based particle filter implementation. For example, the particles are resampled using Independent
Metropolis-Hastings (IMH) resampling method and the root mean square error is used to measure
the accuracy [12]. Although they could apply the parallel particle filter implementation successfully
with the high speed and accurate estimation performance, they did not fully parallelize the particles
due to lack of hardware resources.

Major constraint of parallel resampling is to get the simultaneous information of all particles.
Hence, FO-resampling method overcomes this constraint on the particle filter [4]. In their imple-
mentation, they compared FO-resampling with the multinomial resampling using root mean square
error. The FO-resampling scheme is similar to Gibbs sampling but it can execute the resampling
step without the complete particle set. In our work, we develop a deep-pipelined object tracking
system with stream-based image processing on an FPGA. Image data obtained by the camera device
is streamed in the system pixel by pixel. The streamed processing approach achieves real-time object
detection for input video frames without any external memory modules.
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Figure 1: Overview of a particle filter

3 Particle Filter Algorithm

3.1 Particle Filter

Particle filter is a recursive filter that provides the estimation of non-linear and non-Gaussian pro-
cesses. Each particle has application-specific states such as coordinates and velocities, and these
states are randomly initialized at t = 0. Then, particle filter performs three steps for each time
step as shown in Fig. 1. Prediction utilizes the previous observations to predict the state of a sys-
tem in future time instants for each particle. Moreover, the noise is added to the states to adjust
the irregular movement. For example, when each particle has a 2D coordinate (x, y) and velocities
(vx, vy), and a uniform linear motion is assumed for a tracking target, this process will be expressed
as follows:

xt = xt−1 + vxt−1
+ nx (1)

yt = yt−1 + vyt−1
+ ny (2)

vxt
= vxt−1

+ nvx (3)

vyt
= vyt−1

+ nvy (4)

where xt and xt−1 represent the predicted state of object at time t and t− 1. v denotes the velocity
based on the position of a particle for each time state. According to the noises, nx and ny stand for
the positioning noises and nvx and nvy are the velocity noises. The values of noises are randomly
generated. In likelihood calculation step, weight for the sampled particle is computed as:

w
[m]
t = p(zt|x[m]

t ) (5)

where zt is current sensor measurement and xt shows the m-th particle (1 ≤ m ≤ M and M is the
total number of particles).

Resampling reduces the variance of particles to be loss of diversity and sample again from the
particles until the total number of particles (M) are the same as the previous stage. During resam-
pling step, some particles are replicated in proportion to their weights whereas some particles with
small weights are eliminated to remedy for weight degeneration.

3.2 FPGA Optimized Resampling (FO-resampling)

The conventional multinomial resampling algorithm draws M particles according to the prob-
ability defined by the weights of each particle, so that small weight particles far from target are
died out and big weight particles near the target are replicated. This process needs information of
all particles, making parallel FPGA implementation difficult. However, FO-resampling, which is an
approximated resampling method [4], can solve this problem using virtual particles. Pseudocode for
FO-resampling process describes in Algorithm 1. B denotes the number of virtual particles. x̂i,n
represents a virtual particle and is randomly generated around a real particle xi. A random number
r is generated from a uniform distribution over [−1, 1]. σxi measures the spread of x̂i,n around xi.
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Algorithm 1 FO-resampling process

1: for i = 1 to M do
2: for n = 1 to B do
3: x̂i,n = xi + σxi

∗ r
4: ŵi,n = p(zt|x̂i,n)
5: if ŵi,n > wi then
6: xi = x̂i,n
7: wi = ŵi,n

8: end if
9: end for

10: end for

Figure 2: Overview of the proposed system

To the highest possible weight, the value of σxi
varies inversely with the initial weight. The weight

of a virtual particle ŵi,n is obtained from the likelihood calculation of virtual particle with the ob-
servation zt at the location of object x̂i,n. If ŵi,n is greater than wi, xi and wi will be replaced by
x̂i,n and ŵi,n, respectively whereas xi and wi will keep the values in the opposite case. After being
compared the weights of a real particle and the related B virtual particles, FO-resampling method
replaces a particle with the largest weight. Since the FO-resampling is an approximated method, it
does not produce exactly the same results with the conventional multinomial resampling. Especially,
one of the potential weak points of using the FO-resampling would be that any particles even with
very low weights are not eliminated through replacement. However, this drawback can be mitigated
to an insignificant level by using an enough number of virtual particles [4]. On the other hand, the
main benefit of the FO-resampling is that a process of each particle is fully independent and easily
parallelized. Since no particle is eliminated or duplicated during the process unlike the multinomial
resampling, no interaction among particles is needed. Therefore, parallel hardware architecture with
multiple particle modules can be efficiently implemented on FPGAs, without devoting a chip are to
a mechanism for inter-particle communication.
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Figure 3: State transition diagram of weight comparison step
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Figure 4: Overview of a particle filter module

4 Implementation

4.1 Overview

Our object tracking system with FO-resampling using deep-pipelined stream architecture is shown
in Fig. 2. The whole system is synchronized with the pixel clock of the camera. Pixel data from
the camera interface are streamed into the system for 1 pixel per 1 clock cycle and the weights of
streamed pixel data are calculated in a pipelined manner. Compared with the weights of real and
virtual particles, the maximum weight of particles are replaced as real particles. As shown in Fig. 3,
the system is managed by a state machine with four states, which are initialization, prediction of
real particles, setting of virtual particles, and weight comparison of both particles (resampling).
Focusing on the fact that a video frame consists of a valid pixel region and a synchronization region,
weight comparison is processed in the valid pixel region in a pipelined manner, while prediction and
setting of virtual particles are processed in the synchronization region.

Fig. 4 presents an overview of our particle filter system. Firstly, RGB color values from camera
are fed into a likelihood module, which calculates and outputs a stream of weights as well as the
corresponding coordinate (hw, vw). Then, the weights of the likelihoods are compared with M
numbers of real particles, each with B numbers of virtual particles. After selecting the maximum
weight of each particle, the coordinates and velocities of the selected particles are sent to a weighted
center module, where the center of gravity of real particles calculated as an estimated position of
the tracking target. In parallel with this weighted center calculation, prediction of the next states
of the real particles and generation of new virtual particles are performed.

4.2 Likelihood Calculation

The likelihood module takes a stream of RGB pixels as an input, and outputs a stream of weights of
likelihood in a pipelined manner. While the calculation process of likelihood may vary depending on
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tracking targets, we implemented a color-based object tracking function as an example in this exper-
iment. Since RGB representation is not intuitive for color object detection, color space conversion
to hue, saturation and intensity (HSI) model is performed [13]. In order to mitigate computational
costs and the hardware amount, an integer-based RGB to hue conversion method [14] was adopted.
In this method, hue value is calculated as:

H =



42 +

⌊
42(G−B)

delta

⌋
if R = max(R,G,B),delta >

max(R,G,B)

2

126 +

⌊
42(B −R)

delta

⌋
if G = max(R,G,B),delta >

max(R,G,B)

2

210 +

⌊
42(R−G)

delta

⌋
if B = max(R,G,B),delta >

max(R,G,B)

2

−1 otherwise

(6)

delta = max(R,G,B)−min(R,G,B) (7)

where R, G, B are 8-bit color intensities for red, green and blue, while H is a hue value ranging
from −1 to 252. Then, the difference value of hue (Hd) is calculated as follows:

Hd = min(|H −Ht|, 253− |H −Ht|) (8)

where Ht shows the hue of the tracked object and was set to 40 for this experiment. In the final
step, the weight of the likelihood of the input pixel is calculated as:

w =


⌊
α exp {−Hd

2

2s2 }
⌋

if H 6= −1, R ≥ 64,

0 otherwise

(9)

where α denotes a parameter related to the scale of weights and s represents a parameter indicating
the spread of weight distribution. In this implementation, α and s were set to 1023 and 20, respec-
tively. Since Hd is an 8-bit integer value, the function in Eq. 9 can be simply implemented as a table
in FPGAs.

4.3 Weight Comparison or Resampling

As shown in Fig. 5, a resampling module takes weights of likelihood (w) as an input stream, as well
as the corresponding coordinates (xw, yw). Each resampling module includes one real particle and B
virtual particles. The purpose of this module is to find the particle which has the coordinate of the
maximum weight in the frame. This particle will become the next real particle in this resampling
module.

Each particle compares its coordinate with the input coordinate every clock cycle in parallel. If
one of the particles matches and the input weight is larger than the value of the wmax register, the
register is updated by the input weight, so that the wmax register stores the maximum weight after
processing all the weights in the frame. When the value of wmax is updated, xmax, ymax, vxmax,
and vymax are also updated by the states of the matched particle. Logically, the matched particle
can send its states to the registers by a bus. However, since wired-OR buses cannot be implemented
inside an FPGA chip, this mechanism was implemented as actual OR gates and multiplexers.

4.4 Virtual Particle Arrangement

After selecting the real particles in the resampling modules, the next states of the real particle are
predicted according to Eq. 1 to Eq. 4. Then, new B virtual particles are generated by adding a
random number ranging from −σ to σ to the states of the real particle, to avoid too big or too small
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Figure 5: Resampling module

dispersion of virtual particles around one real particle. In this experiment, considering the ease of
FPGA implementation σ was defined as:

σ =

⌊
1023− w

16

⌋
(10)

where the division by 16 can be simply implemented with a shift operation.

4.5 Center of Gravity Calculation

To the tracking of a moving model, the center of gravity calculation purposes for estimation of the
object position across frames. The center of gravity calculation is given by:

g(x, y) =


M∑
i=1

xiwi

M∑
i=1

wi

,

M∑
i=1

yiwi

M∑
i=1

wi

 (11)

where xi, yi and wi represent x and y coordinates and weight of the i-th particles, respectively. We
also implemented a video output interface circuit on the same FPGA, where the center of gravity
known as the intersection point of two lines is drawn on the object for tracing the trajectories of the
object.

4.6 Random Number Generation

A linear feedback shift register (LFSR), which can generate two random numbers for each clock
cycle, was implemented. By adding x32 in LFSR, the first random generator (rand1) generates the
random bits in the range of 31 to 0 and the second one (rand2) selects the numbers from the range
32 through 1. Bitwise XOR operators provide the four feedback taps at 31, 21, 1, and 0-th bit.
Thus, the characteristic polynomial is

x31 + x21 + x1 + 1. (12)
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(a) (b) (c)

Figure 6: (a) A captured image from video and (b) Corresponding image of weight representation
(c) Example frame of tracking results

A two-bit shift operation is performed every clock cycle. Random numbers generated by this module
are used for initialization of particles, prediction of next states of particles, and arrangement of virtual
particles.

5 Evaluation and Discussion

5.1 Preliminary Evaluation

At first, we evaluated the required number of real and virtual particles for the FO-resampling
method in software before implementing on an FPGA, using an object tracking benchmark video
[15] whose tracking target is a red soccer ball. The video-captured image and a snapshot of weight
representation are shown in Fig. 6(a) and (b). An example of our tracking results is also shown in
Fig. 6(c),

The estimation accuracy was evaluated using four metrics: Tracker Detection Rate (TDR),
Average Tracking Error (ATE), Maximum Tracking Error (MTE) and Root Mean Square Error
(RMSE) given by Eq. 13, Eq. 14, Eq. 15 and Eq. 16.

TDR =
Ft

F
(13)

ATE =
1

F

F∑
n = 1

√
(xg − xn)2 + (yg − yn)2 (14)

MTE = max
(√

(xg − xn)2 + (yg − yn)2
)

(15)

RMSE =

√√√√ 1

F

F∑
n = 1

(xg − xn)2 + (yg − yn)2 (16)

where F and Ft denote the total number of frames and successfully tracked frames in a video. The
frame size for benchmark video is 320× 240 and F is 602. A tracker is initialized in the first frame
of a sequence and tracks the object of interest up to the end. The produced trajectory is then
compared to ground truth using a number of measures specified in the particular experiment [16].

The ground truth data indicating the correct coordinate of the target object, which is distributed
with the benchmark video, is given as the rectangular area for each frame. If the target object is
inside a rectangular area, Ft will increase. ATE measures average discrepancy between centroid of
ground truth bounding box and that of tracking system. MTE specifies the maximum tracking error
between the center coordinate of each ground truth rectangular (xg, yg) and tracking coordinate
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Table 1: Tracker Detection Rate of Each Implementation

TDR
No. of real particles: M

50 100 500 1000 2000

20 0.934 0.935 0.935 0.939 0.942

40 0.965 1.000 1.000 1.000 1.000

No. of virtual particles: B 50 1.000 1.000 1.000 1.000 1.000

60 1.000 1.000 1.000 1.000 1.000

80 1.000 1.000 1.000 1.000 1.000

Table 2: Average Tracking Error of Each Implementation

ATE
No. of real particles: M

50 100 500 1000 2000

20 0.033 0.029 0.027 0.026 0.025

40 0.023 0.018 0.017 0.016 0.016

No. of virtual particles: B 50 0.019 0.017 0.015 0.016 0.015

60 0.020 0.018 0.016 0.016 0.016

80 0.020 0.019 0.018 0.018 0.018

Table 3: Maximum Tracking Error of Each Implementation

MTE
No. of real particles: M

50 100 500 1000 2000

20 0.452 0.315 0.387 0.365 0.368

40 0.155 0.082 0.100 0.083 0.076

No. of virtual particles: B 50 0.106 0.054 0.048 0.048 0.045

60 0.061 0.056 0.048 0.047 0.048

80 0.085 0.063 0.055 0.053 0.052

Table 4: Accuracy Comparison of FO-resampling and Multinomial Resampling

M Sampling method Ft F − Ft TDR ATE MTE RMSE

50
Multinomial 158 444 0.262 0.476 0.864 0.037

FO (B = 50) 602 0 1.000 0.019 0.106 0.001

100
Multinomial 256 346 0.425 0.388 0.910 0.022

FO (B = 50) 602 0 1.000 0.017 0.054 0.001

500
Multinomial 600 2 0.997 0.052 0.383 0.005

FO (B = 50) 602 0 1.000 0.015 0.048 0.001

1000
Multinomial 600 2 0.997 0.051 0.171 0.004

FO (B = 50) 602 0 1.000 0.016 0.048 0.001

2000
Multinomial 602 0 1.000 0.050 0.094 0.004

FO (B = 50) 602 0 1.000 0.015 0.045 0.001
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Figure 7: RMSE comparison of FO-resampling and multinomial resampling

Table 5: FPGA Mapping Result for the First Design (X1 NORMAL)

LUT 160,940(78.97%)

FF 177,229(43.48%)

BRAM 0(0.00%)

DSP48E 408(48.57%)

Max clock frequency (MHz) 28.00

(xn, yn). When M is above 100, the tracker detecting rate and the accuracy errors are not much
different as shown in Table. 1, Table. 2 and Table. 3. The number of real particles (M = 100) on
the number of virtual particles (B = 50) is chosen as the appropriate parameters in terms of the
reasonable tracking accuracy and less amount of resource utilization. Table. 4 shows the accuracy
comparisons using FO-resampling (B = 50) and multinomial resampling on 602 frames. Obviously,
FO-resampling can track successfully in all frames with smaller errors. Fig. 7 shows how tracking
error changes along the frames with the two resampling methods. While the error with the FO-
resampling was decreased along frame goes, the error was sometimes increased with the multinomial
resampling, showing the effectiveness of the FO-resampling.

5.2 FPGA Mapping

We implemented the proposed system on a Kintex-7 XC7K325T FPGA using Xilinx Vivado 2016.3.
According to the results of the preliminary evaluation, M and B were set to 100 and 50, respectively.
The constraint for the clock frequency was set to 27 MHz, which is the pixel clock of a Video Graphic
Array (VGA: 640 × 480 pixels) camera with the frame rate of 60 fps. Table. 5 illustrates FPGA
resources for the first design, namely X1 NORMAL. As shown in the table, the clock constraint was
met with the maximum clock frequency, achieving the throughput of 60 fps for VGA frames.

When it comes to the latency in clock cycles, latencies for the likelihood calculation (Llikelihood),
resampling (Lresampling), prediction (Lprediction), virtual particle generation (Lvirtual), and weighted
center calculation (Lcenter) have to be considered. As aforementioned, the prediction and virtual
particle generation are performed in parallel with the weighted center calculation. Thus, the total
latency is given as:

Ltotal = Llikelihood + Lresampling + max(Lprediction + Lvirtual, Lcenter) (17)
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and each latency in this implementation is given as:

Llikelihood = 3 (18)

Lresampling = (Vh + Sh)× (Vv − 1) + Vh = (640 + 218)× (480− 1) + 640 = 411, 622 (19)

where Vh, Vv, and Sh are the horizontal length of the valid pixel region, the vertical length of the
valid pixel region, and the length of the horizontal synchronization region, respectively. As shown
in Fig. 3, Vh = 640, Vv = 480, and Sh = 218, in this implementation. Note that the resampling is
performed for each clock cycle of pixel input and is finished when the last (the lower right) valid
pixel is processed. Other latencies are as follows.

Lprediction = 1 (20)

Lvirtual = B + 1 (21)

Lcenter = M + 36. (22)

By assigning Eq. 18 ∼ Eq. 22, M = 100, and B = 50 to Eq. 17, we get:

Ltotal = 411, 625 + max(B + 2,M + 36) = 411, 761. (23)

On the other hand, as Fig. 3 shows, available clock cycles for one frame including the synchronization
region is

Lframe = 858× 525 = 450, 450. (24)

Since Ltotal < Lframe, it has been shown that the implemented particle filter system achieves an
in-frame operation.

Our design fits in XC7K325T which is a mid-range Kintex-7 device and achieves real-time per-
formance in terms of both throughput and latency. At the same time, the mapping results in Table 5
suggest there is a possibility of design improvement for three reasons. Firstly, the resource utiliza-
tion was not well-balanced especially due to no BRAM utilization. If we can change the balance
of resource utilization, the design may fin in a smaller chip. Secondly, we can take up the slack of
clock cycles in synchronization region. If so, then we can put more tasks into synchronization region
to change resource balance. Finally, the required clock frequency of 27 MHz is too slow for typical
FPGA design. The FPGA actually may operate much faster, by inserting registers in combinations
logic paths. By increasing clock frequency, we can reduce the hardware amount by reusing hardware
resources in a time-sharing manner. In Section 6, we implement and discuss the new designs for the
sake of more compact design.

6 Improvement of Resource and Time Management

6.1 Design Alternatives

In this section, we focus on the impact of the resource and time management which is available to im-
prove area and speed on FPGA. We implemented the following three additional design alternatives,
aiming at reducing the hardware amount.

X1 SYNC V The first attempt of improvement focuses on the resampling module shown in Fig. 5.
The inefficiency comes from the (B + 1)-input OR gates, which are utilized to sent the states of
the matched particle to registers. Considering we have not used any BRAM resources and there is
a slack of the latency, we modified the task mapping of the resampling. Instead of completing the
whole resampling task in the valid pixel region, we divided the resampling task into two sub-tasks:
weight comparison and state reading. While the weight comparison is performed in the same manner
with the first design, the velocity of the next real particle is sequentially searched and read out in
the synchronization region. In this way, large amounts of OR gates can be eliminated as shown in
Fig. 8. On the other hand, as Fig. 9 illustrates, BRAM with a 29-bit width and 50 depth is used
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to store velocity of the particles. In the weight comparison sub-task, the coordinate of the next real
particle is found. After that, using this coordinate as a key, the corresponding velocity is searched
on this BRAM. In addition, in order to reduce the logic amount for arithmetic, bit widths for each
particle data are optimized.

X5 LUT RAM This design is based on X1 SYNC V, but operates at a 5 times higher clock fre-
quency, that is 135 MHz. Thus, a new pixel is given in this design every 5 clock cycles. Comparisons
with up to 5 different particles can be performed using the same logic in a time sharing manner.
As shown in Fig. 10, the states of particles are stored in on-chip memory with a 190-bit width
and 5 depth, since only one fifth of the particles are accessed at the same time. This memory is
implemented as distributed RAM using LUTs.

X5 BRAM This design is based on X5 LUT RAM. The difference is that the 5-depth table for
particle states is implemented as BRAM, not as distributed RAM unlike the previous design.

6.2 Mapping Results

We implemented the above three designs on the Kintex-7 XC7K325T FPGA with 100 real particles
and 50 virtual particles. Table. 6 summarizes the FPGA mapping results. Compared to the results
of the original X1 NORMAL design (Table. 5) each new design reduces the utilization of LUTs and
FFs while increasing BRAM usage. Especially, as shown in Table. 6, the X5 LUT RAM design
was successfully implemented on a smaller FPGA chip (XC7K160T), demonstrating that resource
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Figure 10: Overview of a particle filter module for X5 LUT RAM and X5 BRAM

sharing with a high clock frequency leads to the compact architecture and the cost down. Although
X5 BRAM achieved the highest resource reduction rates in terms of LUTs and FFs, it consumed
approximately 80% of the BRAM offered by XC7K325T. That is why this design cannot be fitted
in the smaller chip.

The clock constraints were met for each new design, achieving the throughput of 60 fps for VGA
frames. The difference in the latency between X1 SYNC V and X1 NORMAL only exits in the
resampling:

Lresampling = 411, 622 +B (25)

since the state reading sub-task was added. Thus, we get:

Ltotal = 411, 811 (26)

which is also smaller than Lframe given by Eq. 24.
For X5 LUT RAM and X5 BRAM, the latencies were changed as follows.

Llikelihood = 7 (27)

Lresampling = (858× 479 + 640)× 5 +B + 2 = 2, 058, 112 +B (28)

Lprediction = 4 (29)

Lvirtual = B + 5 (30)

Lcenter = M + 37. (31)

For M = 100 and B = 50, the total latency becomes:

Ltotal = 2, 058, 119 +B + max(B + 9,M + 37) = 2, 058, 306 (32)

which is smaller than Lframe × 5 = 2, 252, 250. Thus, it has been revealed that for each design
alternative, realtime performance was achieved in terms of not only throughput but also latencies.

6.3 Power Consumption

We have demonstrated our particle filter design can be fitted in a smaller FPGA chip, by introducing
resource time sharing with a higher clock frequency. Use of a smaller chip will also contribute in
reduction of power consumption, while increase in the clock frequency has a negative effect for power
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Table 6: FPGA mapping results for improved designs

Resources X1 SYNC V X5 LUT RAM (XC7K325T) X5 LUT RAM (XC7K160T) X5 BRAM

LUT 102,750(50.42%) 81,895(40.18%) 81,868(80.74%) 69,203(33.96%)

FF 156,119(38.30%) 106,646(26.16%) 106,646(52.59%) 68,646(16.84%)

BRAM 51(11.46%) 51(11.46%) 51(15.69%) 351(78.88%)

DSP48E 203(24.17%) 203(24.17%) 203(33.83%) 203(24.17%)

Max frequency (MHz) 33.70 139.38 141.18 141.25

Table 7: Power Consumption Comparison

X1 NORMAL X1 SYNC V X5 LUT RAM (XC7K325T) X5 LUT RAM (XC7K160T) X5 BRAM

Dynamic Power [W] 0.842 0.772 2.289 2.186 3.530

Static Power [W] 0.165 0.169 0.179 0.127 0.209

Total on-chip power [W] 1.008 0.941 2.469 2.314 3.740

reduction. In order to analyze and discuss the tradeoff, we estimated power consumption of each
design with Xilinx Vivado tool. Table. 7 shows the results.

By comparing X5 LUT RAM on XC7K325T and the same design on XC7K160T, approximately
6% of total on-chip power reduction was shown. However, the power consumption for X5 LUT RAM
on XC7K160T was 2.7 to 3.0 times higher than the designs synchronized with the camera clock.
That is, the increase in power consumption caused by the increase in the clock frequency cannot be
compensated by downsizing the chip. In summary, large designs with a slow clock frequency were
more efficient than small designs with a fast clock frequency in terms of power consumption.

7 Conclusion

This paper proposed efficient FPGA implementation of particle filters with an FO-resampling
method. The software-based preliminary evaluation demonstrated that the FO-resampling method
can achieve better object tracking quality compared to multinomial resampling by setting an ap-
propriate number of real particles and virtual particles. The implementation experiment on a
KC7K325T FPGA revealed that the proposed architecture achieved realtime performance of 60
fps for VGA images without using any external memory devices, by making best use of a stream
processing approach in a valid pixel region while performing some sequential process in a synchro-
nization region. In addition, by introducing a higher clock frequency than the pixel clock and by
improving a balance of resource utilization, we demonstrated our design can be fitted in a smaller
XC7K160T FPGA. However, it was also shown that the power consumption for a smaller design
with a 5 times clock frequency was increased by 2.7 to 3.0 times, compared to a design implemented
on a larger chip synchronizing with a slow camera pixel clock. Our challenging future work includes
the evaluation of particle filters with a large number of particles for non-rigid objects and to find
the best tradeoff point between chip size and clock frequency.
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