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Abstract

Detecting critical paths in traditional message passing parallel programs can be useful for
post-mortem performance analysis. This paper presents an efficient online algorithm for detect-
ing critical paths for message-driven parallel programs. Initial implementations of the algorithm
have been created in three message-driven parallel languages: Charm++, Charisma, and Struc-
tured Dagger. Not only does this work describe a novel implementation of critical path detection
for the message-driven programs, but also the resulting critical paths are successfully used as
the program runs for automatic performance tuning. The actionable information provided by
the critical path is shown to be useful for online performance tuning within the context of the
message driven parallel model, whereas it has never been used for online purposes within the
traditional message passing model.

Keywords: Critical Path Detection, Message Driven Parallel Languages, Adaptive Runtime Sys-
tems

1 Introduction

A critical path is a type of important path through the execution of a parallel program. Specifically,
critical paths provide a lower bound on the execution time for a program and identify the activities
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in the program that in turn limit the performance of a parallel program. In the past, critical path
detection schemes were developed for some typical message passing models such as PVM [7] and
MPI [10]. These approaches record a distributed Program Activity Graph (PAG) as a program
executes by storing local portions of the PAG on each processor while augmenting each message
sent between processors with information about a critical path leading up to the message send. The
critical path can be extracted through a backwards traversal of the distributed PAG.

Although researchers have developed methods for detecting critical paths within the message-
passing models of parallel computation, they have not previously detected critical paths at runtime
within a message-driven execution model of parallel computing. In this work, we implement an
efficient critical path detection mechanism inside the Charm++ message-driven distributed object
system. The Charm++ programming model has fundamental differences from the more widely
used approach of programming at the level of communicating processors. These differences require
revisiting and adapting the known algorithms for critical path profiling, but the differences also
provide fertile new ground for novel uses of the resulting critical path profiles. This paper describes
both the implementation of critical path detection for the message-driven programs and how the
resulting critical paths can be successfully used for online automatic performance tuning and for
other tasks.

We show that the critical path profiles obtained online by our implementation can be used to
automatically tune the performance of a complicated real-world quantum chemistry application,
improving its performance by 10.2%.

2 Message Driven Parallel Programs

The most widely used parallel programming model for distributed memory systems is the message
passing model which has become standardized in MPI [3]. An alternative model is the message-
driven execution model. In this model, the programmer does not write programs explicitly for a set
of processors as is done in MPI, but rather the programmer describes the computation as a set of
tasks whose computation is driven by messages sent by other tasks. The tasks are mapped onto the
computational resources dynamically by the runtime system.

The message driven execution model is a paradigm that has proven to be successful for parallel
programming. Scientific simulation codes such as NAMD [1] and OpenAtom [11] are written using
this model. The message driven approach could also be called data driven because tasks are dynam-
ically scheduled when the prerequisite data (usually in the form of messages) is available. Directed
acyclic graphs (DAGs) can be used to describe a program’s pattern of computation and communica-
tion, with the edges in the graph representing the dependencies between all the computation tasks
in the parallel program. Tasks can be scheduled in any order as long as all the dependencies for
each task have been satisfied before the task is executed. The parallel runtime system can record
the DAG when the tasks in the program are executed.

A dynamic message driven program must therefore include a scheduler responsible for executing
tasks once dependencies have been fulfilled. For this paper, we focus on the Charm++ language [9]
and two languages that each extend it: Charisma and Structured Dagger.

3 Program Activity Graph Terminology

As a parallel message-driven program executes, its execution can be represented by a directed acyclic
program activity graph (PAG), composed of tasks and their dependencies. This section defines
specifically what a program activity graph represents for message-driven parallel programs. Figure
1 shows a small example PAG composed of 8 tasks that ran on 4 processors.

Task: After its prerequisite dependencies have been fulfilled, a task is executed by a scheduler
on a single processor. Each task may send messages that fulfill dependencies for other tasks.

Task Prefix: A task prefix is the portion of a task from its beginning to the point where a
message is sent or the task ends. There exist m + 1 task prefixes for each task which sends m
messages. The weight of each task prefix is the the execution time for the task prefix.
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Figure 1: Example timeline view of a parallel program activity graph. Task A represents a task that
multicasts a messages to two other processors. Task prefix B can execute once its message from A
arrives. Then task prefix B sends a message. Task C can only execute after three preceding tasks
have completed.

Initial Task: The beginning of a program is the execution of a single initial task in the parallel
runtime system that in turn spawns one or more startup tasks specified in the program.

Terminal Task: A terminal task causes the parallel program to terminate.
Message Edge: A message edge represents a dependency from a sending task prefix to the

execution of a task spawned by the message.
Program Order Dependency Edge: Other dependencies due to sequencing requirements in

the program are represented by program order dependency edges. In a message-driven system, these
sequencing requirements could be implemented as messages.

Program Activity Graph (PAG): A PAG represents an execution of a parallel program,
with one vertex for each task prefix and a set of edges comprising the dependencies between the task
prefixes. The PAG is therefore a directed acyclic vertex-weighted graph.

Task In-Degree: Each task is executed once a set of messages have arrived and all other order
dependencies have been satisfied. The in-degree of a task is the number of incoming message edges
and program order edges to the task. The in-degree for all non-initial tasks is ≥ 1.

Task Out-Degree: Each task prefix either results in the sending of a message, or the completion
of the task. Each message send is the start of a message edge while the completion of the task results
in zero or more program order dependency edges in the program activity graph. The out-degree of
each task is thus the number of messages sent by the task, plus the number of program order edges
produced by the end of the task. All non-terminal tasks have out-degree ≥ 1.

Path: A path is an alternating sequence of task prefixes and edges in the PAG beginning with
some task prefix and ending with another task prefix, where each task prefix is incident to both the
edge that precedes it and the edge that follows it in the sequence.

Path Duration: The path duration is the sum of the node weights (task prefix execution
durations) along the path. The path duration represents the minimum possible execution time of
the path, with unlimited processors and an infinitely fast network.

Critical Path (t):
For each task t in the PAG, its critical path is the path of maximal path duration which ends at

t and starts at the initial task.
The path duration of the critical path for a phase of an application represents a lower bound on

the execution time for the application phase. It does not include any communication times along
the path or the computation times for other unrelated concurrent tasks.

Critical Path Profile (t):
The critical path profile for any task t is the critical path for t augmented with information about

the task prefixes comprising the path. The information about each task prefix depends upon the
desired use of the critical path profile. It is anticipated that the information will identify the type
of the task and the specific instance of the task prefix, in a manner that is meaningful to an online
automatic performance tuning system or an offline performance analysis tool.
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4 Algorithm for Determining a Critical Path

To determine the critical path for a program execution, we use an approach similar to the approach
described in [6]. In both approaches, a distributed PAG is constructed at runtime, but the exact
details of what is stored in the table is different. In our approach, each processor maintains a table
of all task prefixes that have executed locally. Figure 2 shows an example of a PAG and the local
information stored on each processor. To store the necessary information, an entry is added to
the local processor’s table each time a message is sent or when a task completes. Information that
uniquely identifies the sending task prefix is appended to each message. Specifically, each message is
augmented with two values, one records the duration of the path that led to the message send and
a second uniquely identifies the sender-task-prefix in the sending processor’s table. Messages must
also contain a field specifying the index of the sending processor, but this field already exists in all
Charm++ messages.

The critical path is determined for each task prior to its execution once all incoming dependencies
have been satisfied. The path descriptors contained in all incoming messages or dependency edges are
merged by selecting the one with maximal duration. All non-maximal incoming paths are ignored.
Keeping the maximum incoming path maintains the invariant that each critical path extended along
a dependency edge is maximal (critical). Figure 3 shows an example of three incoming message
dependencies for a task. The incoming path with maximum cumulative path duration is stored in
the processor table to be able to trace back any critical path that includes the task.

When a path is propagated forward via a message or other dependency, the duration of extended
path is found by adding the time spent executing the task prefix to the duration of its maximal
incoming path. The new value representing the whole path duration is then stored in the newly
prepared message.

When the critical path profile is required for a task t, a backward traversal through the distributed
PAG is performed. At each step in the traversal, the information about the task prefix is retrieved
and then its maximal incoming dependency edge is followed backward.

5 Implementations

We have implemented the critical path detection algorithm inside the Charm++ runtime system.
This implementation supports standard Charm++ programs as well as those written using the
Structured Dagger or Charisma languages.

To implement the critical path profiling algorithm, the following portions of the Charm++
runtime system were modified1:

• A new module was created.

• The module’s startup routines on each processor create a table to hold the local portion of the
PAG.

• The envelope used for all Charm++ messages was expanded to hold the critical path duration
and a reference to the sender’s table entry.

• The message send functions were modified to fill in the envelope fields with the information
about the currently executing task, after creating a new table entry.

• Methods for performing the backwards traversal over the PAG were created within the new
module.

• Macros were created to simplify the storing of the maximal known incoming edge and the
comparing of it with each new incoming dependency.

• Instances of the macros were added to the Charm++ reduction methods.
1This implementation can be found in the publicly available development version of Charm++. The new module

is located in the src/ck-cp directory.
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Figure 2: The tables created on each of 4 processors representing this example PAG. The specific
entries for task prefixes with in degree greater than zero depend upon the actual program execution,
but here all multiple possibilities are shown.
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Figure 3: Illustration of how three incoming message dependencies are merged by recording only
the one with maximal path duration. Each message contains information pointing back to a table
entry for its sending task, as well as the critical path’s duration.
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class myClass: public CBase_myClass {

...

MERGE_PATH_DECLARE(A);

...

void recvGhost(msg *m) {

buffer_msg(m);

MERGE_PATH_MAX(A);

if(received_all_msg ()){

MERGE_PATH_RESET(A);

subsequent_task ();

}

}

};

Figure 4: Multiple dependencies occur when buffering messages prior to executing a task.

To use the new critical path detection capabilities, a Charm++ program must be modified to
add macros at each point where the program in-degree is greater than one. Charisma or Structured
Dagger programs, however, do not require any modification because their compilers have been
adapted to automatically insert the macro instances wherever required. Sections 5.1, 5.2, and 5.3
provide examples of all the various places in each of the three languages where the in-degree for a
task could be greater than one.

5.1 Charm++ Programming Model

The first language supported by the new critical path detection scheme is Charm++. All Charm++
programs are written mostly in C++, with a small interface portion that is parsed by a very simple
translator that generates C++ code.

In the Charm++ language, there are two places where in-degree is greater than 1. In one of
these two places, the user must augment their code with simple annotations specifying that multiple
incoming messages are dependencies for a certain task.

1. Reductions from multiple objects to a single destination entry method result in an in-degree
greater than one. The reduction framework in Charm++ has been modified to correctly
compute the maximal incoming paths along any reduction tree, so the user does not need to
modify an application to handle the dependencies that arise due to reduction calls.

2. The user can buffer incoming messages explicitly until all necessary messages have arrived, at
which point the execution of some task is performed. Each time the user buffers a message,
a new implicit dependency is created and the in-degree of the task increases. Figure 4 shows
an example of such explicit buffering. To correctly handle the critical paths, the user must
augment the Charm++ program with macros specifying that there are multiple incoming mes-
sage dependencies. To do this, the user must add three macros to declare, merge, and reset
the paths: MERGE PATH DECLARE(t), MERGE PATH MAX(t), and MERGE PATH RESET(t). After
all dependencies have arrived, the stored path information is reset for possible use in a future
iteration. Each macro takes a parameter that distinguishes between multiple sets of dependen-
cies that could be declared within the same scope in the source code. For example, if a single
class has two tasks, each with multiple incoming dependencies, then MERGE PATH DECLARE(A)
and MERGE PATH DECLARE(B) could be used to create data structures that store the two differ-
ent incoming maximal paths.

5.2 Structured Dagger Programming Language

The Structured Dagger language is an extension to Charm++. It allows a programmer to express a
complicated control flow with various dependency patterns easily. In Structured Dagger programs,
messages are buffered automatically until all input dependencies for an object have arrived, at which
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overlap {

when recvLeft(msg *l)

atomic { processLeft(l); }

when recvRight(msg *r)

atomic { processRight(r); }

}

atomic { subsequentTask (); }

recvLeft processLeft

Time

subsequentTaskrecvRight processRight

Figure 5: In a Structured Dagger program, the task following an overlap block will depend upon
program order dependency edges produced by each of the overlapped tasks.

atomic { previousTask (); }

when recvLeft(msg *l),

recvRight(msg *r)

atomic { process(l,r); }

recvLeft

Time

previousTask recvRight process

Figure 6: In this Structured Dagger example, the process task depends upon 2 messages as well as
the program order dependency from the task preceding the when statement.

point the object’s entry method is invoked. The dataflow patterns and all associated dependencies
in the program are clearly expressed in the language, so the programmer does not need to add extra
annotations to the program.

For clarity and to help implementers of similar languages, described below are the types of
dependencies that must be handled for languages similar to Structured Dagger. Structured Dagger
provides language constructs that impose ordering restrictions between the ends of some tasks and
the beginnings of other tasks. Structured Dagger also provides language constructs for message
sending and receiving.

1. All concurrent tasks specified inside an overlap block must complete before any subsequent
task begins. Thus there are program order dependencies from the ends of the overlapped tasks
to the beginning of the subsequent task. Figure 5 shows an example of this pattern.

2. Each when clause requires that one or more messages have been delivered prior to executing the
following statement. Additionally, it requires that the preceding statement has also finished
executing. Figure 6 shows an example of this pattern with two message dependencies and one
program order dependency.

5.3 Charisma Programming Model

The Charisma language [8] is built upon Charm++. It allows a programmer to express various
static dataflow and producer-consumer patterns easily. The dataflow patterns and all associated
dependencies in the program are clearly expressed in the language, so programmers do not need to
modify their programs for use without the critical path detection scheme.
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For clarity and to help implementers of similar languages, we will describe the types of dependen-
cies that must be handled for languages such as Charisma. Charisma provides language constructs
that impose ordering restrictions between the ends of some tasks and the beginnings of other tasks.
Charisma also provides language constructs for producing and consuming messages.

There are two places in Charisma programs where tasks can have in-degrees exceeding one. The
Charisma compiler has been modified to record the proper critical path information for these types
of dependencies.

1. A statement can consume multiple input parameters:
workers[i].compute(lb[i+1], rb[i-1]);

2. A reduction results in multiple dependencies flowing into a single task:
(+error) <- workers[i].getData();

6 Overhead

The overhead of using the critical path detection mechanism is small. Figure 7 plots the overhead
for two simple benchmark programs. The benchmark programs were created to measure the costs
associated with recording the table entries on each processor and the increased size of each message.
Two versions of each benchmark program are run, and their results are compared to determine the
overhead. In the first version, the critical path functionality is entirely disabled. The envelopes are
not augmented with critical path table references, nor are the critical path tables allocated. The
second version is compiled against a version of Charm++ containing the critical path mechanisms
described in section 5. These experiments were performed on the Cray XT5 system named Kraken
at NICS.
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Figure 7: Overhead of recording critical path information for varying computational grain sizes in
both a ring benchmark program and a 2-D grid program where each processor communicates with
4 neighbors during each step.

The first benchmark program sends a small message around a ring of Charm++ objects. Each
object, upon receipt of the message, performs some amount of CPU work, and then sends a copy of
the message to the next object in the ring. The amount of work performed by each object is varied to
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simulate various computational grain sizes. If the amount of work is small, the ring proceeds faster,
while if the amount of work is greater, the ring proceeds more slowly. Each of the ring executions
is timed, and the granularity of the program is calculated: tasks per second = number of hops in ring

ring execution time .
The benchmark results shown in Figure 7 correspond to an execution of the benchmark with 40,000
hops around the ring for each granularity sample to amortize away perturbations. The second bench-
mark program exhibits more complicated communication patterns than the first ring benchmark.
Specifically, a 2-D grid of chares is created, with each chare communicating with 4 nearby neighbors
each step. Again, varying amounts of fake computations are performed each step to simulate various
grain sizes.

Ultimately, the overhead for the ring benchmark executing 10,000 task prefixes per second on
each processor will incur an overhead of about 1%. The overhead is caused by the recording of the
information necessary to reconstruct a critical path profile. That is, each task executes for about
100µs with an overhead of 1µs. The overhead for the 4-neighbor program is higher, as expected,
because each task sends four times as many messages per step than the ring benchmark.

An experiment was performed to measure how much of the overhead was attributable to the two
main mechanisms used to record a critical path or PAG. In this experiment, a portion of the critical
path measurement system, namely the code that allocates and updates a table on each processor,
is removed. Then the 4-neighbor benchmark program was run to measure the overhead when the
critical path duration is propagated in the message envelopes, but the tables are not created.

In this experiment, the baseline 4-neighbor benchmark executes 3769 tasks per second. The
first version of the program propagates critical path information through all messages, but does not
record table entries and hence would not be able to perform a backwards traversal of the path. The
second version does include the full critical path profiling system described in this paper, including
the recording of entries in tables on all processors. The first version incurs an overhead of 0.19%.
The second version incurs an overhead of 0.31%. Thus about 61% of the costs incurred by the
critical path monitoring are caused by the adding 12 bytes to each message envelope, the timer
calls measuring the lengths of each task, and the propagating of information found in the messages
any time a new message is sent. The remaining 39% of the costs are caused by the recording of
information in the distributed PAG tables across the processors.

7 Using Critical Path Profiles

In related work, critical path profiles were gathered in online or semi-online manners, but the re-
sulting critical path profiles were only used for offline performance analysis [7, 4, 6, 5, 10, 12]. One
novel contribution of this work is to show that critical path profiles can be used both for automatic
online performance tuning and for offline manual performance analysis.

There are already multiple uses of the new critical path detection mechanisms in the Charm++
runtime system. Section 7.1 describes a simple online automatic task prioritization scheme that
improves a complicated real-world application’s performance by 10.2%. Section 7.2 describes some
initial work in using critical paths at runtime to reduce the volume of performance trace data that
is gathered for use in offline post-mortem performance analysis tools. Finally, sections 7.3 and
7.4 describe the uses of the critical paths offline in a more traditional manner to guide manual
performance analysis.

7.1 Automatically Tuning Task Priorities

One of the most obvious uses of critical path profiles at runtime is to automatically adjust the
scheduling priorities for tasks. In the Charm++ programming model, users can associate priorities
with each message. Each processor has a scheduler that chooses messages one-at-a-time to execute
from a priority queue. Each task in a Charm++ program is simply the non-preemptable execution
of a message on a single processor. Typically, Charm++ programs over-decompose a problem so
that at any point in time a processor’s scheduler queue will contain many messages that need to be
executed. The priorities for each message allow high-priority tasks to be executed earlier than lower
priority tasks whose messages may have been created or arrived earlier on a processor. In many
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Charm++ programs, message priorities are hand tuned using both the programmer’s intuition and
experimental runs testing different configurations. Such manual tuning is time consuming and may
not be portable.

An automatic message prioritization scheme was created in the Charm++ runtime system. The
scheme extracts from a critical path profile the types of tasks found along the path, i.e. the entry
method index associated with each task. The autoprioritization mechanism then modifies message
priorities when outgoing messages are prepared by the runtime system just prior to being sent. In
the current implementation, only messages allocated with priority bits are modified. The priorities
on the messages are adjusted based on whether or not the destination task type is found within a
critical path profile. A message whose target entry method is found along the critical path profile is
given a high priority while messages destined for other entry methods are given low priorities. Using
this simple autoprioritization scheme, speedups can be observed in real applications.

The developers of the OpenAtom quantum chemistry application [2] have found that by manually
tuning message priorities, the application performance varies by about 10%. Unfortunately, the
manually chosen priority configurations that work well on one parallel machine and input problem
do not work well on other machines or with other input problems. Thus if the priorities could be
automatically tuned, the performance of the application would improve for many of its users and
the effort required to manually tune the program would be eliminated. Our test shows that indeed
an automatic message prioritization scheme is useful.

To test the effectiveness of the automatic message prioritization scheme, we made two minor
sets of modifications to the OpenAtom source code. The first modification was to add macros to
mark the multiple incoming dependencies for certain tasks. These changes required adding the
MERGE PATH DECLARE and corresponding MERGE PATH MAX and MERGE PATH RESET macros in 6 loca-
tions within 3 different classes in the source code. The second modification was to add a call to
useThisCriticalPathForPriorities() after a specific iteration to start traversing the critical path
and request that it be used for message prioritization. All of these changes were easy to make.

To run the program, we used the water 32 70 system and ran the program on 64 processors
of the Cray XT5 machine, Kraken, at NICS. The configuration files were modified to enable the
prioritization of three types of messages, of which only two are enabled by default. We did not modify
any of the specific message priority coefficients. Then the application was run for 40 application
iterations. The first half of the iterations used the default message priorities while the second half
used the automatic message prioritization scheme based upon the critical path gathered at iteration
20. The iteration timings output by the program were analyzed to determine the benefits of the
automatic prioritization scheme relative to the default message priorities. Specifically, two startup
iterations and the two fastest and slowest iterations for each case were ignored, resulting in 15
remaining iteration times for each case.

The resulting performance of the automatically prioritized portion of the application’s execution
was 10.2% faster than the other portion that used the default priorities. In both portions of the
execution, the critical path algorithm is enabled, so any overheads associated with the critical path
detection are present in both portions.

7.2 Performance Analysis Data Reduction

A second use of critical path profiles is to reduce the volume of data produced for post-mortem
performance analysis at runtime. The critical path profile itself can be used online for filtering trace
data produced by parallel programs run on many processors. At the end of the program, the critical
path profile is produced and broadcast to all processors. The processors use this resulting critical
path profile to determine how to filter their local performance trace logs before writing them to disk.
The volume of performance data that needs to be analyzed offline is much smaller. Such savings are
significant for large program runs on hundreds of thousands of processors.

To use this feature in the current implementation, the parallel program can simply make a call
near the end of its computation to traceCriticalPathBack(). This call will trace the critical path
back to its origin at which point the entire path will be broadcast to all processors. The recipients
of the broadcast will instruct the performance log tracing framework to not output the log files to
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Figure 8: The critical paths can enhance visualizations of performance analysis in post-mortem
analysis tools. This shows a timeline view of 6 processors of a Charm++ program simulating the
2-D wave equation. The task prefixes along the critical path are displayed as dark blue bars above
on top of each processors’ tasks.
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Figure 9: Time to compute frequently repeated sub-paths for varying lengths of input critical paths.
The minimum support level is the number of times a sub-path must appear for it to be considered
frequent.

disk if the processor is not found along the critical path tasks. Thus any uninteresting processors,
namely those not along the critical path, will not write to disk their potentially large trace logs. The
exact savings in data volume are program dependent.

7.3 Post-Mortem Performance Analysis

Critical paths can be displayed in a post-mortem performance analysis tool to help visually identify
features of the program’s execution in a timeline view. Our system provides the ability to generate
the necessary trace log data from a critical path profile. Figure 8 shows such a performance analysis
visualization of a Charm++ program that solves the wave equation over a 2-d grid. Each processor
contains 2 partitions of the 2-D problem domain. Thus about half of the program’s execution time
is spent along the critical path. There is a neighbor communication of ghost values each step, and
each worker task is augmented with code that merges the incoming paths as described in section
5.1.
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Figure 10: A frequently repeated sub-path is shown in bold

7.4 Phase Detection

A final use of critical paths is to automatically detect repeating phases in a parallel application’s
execution. If the application’s behavior is relatively static and the program executes a large number
of iterations, which is common in most scientific computations, then the critical path should reflect
the repeated phases of the program. Searching for phases in complete trace data would likely take
longer than searching for phases in the much simpler critical path through the program’s execution.

To make the problem of finding phases in the critical path easier, a critical path can be translated
into a string over an alphabet of different types of tasks. The problem of finding repeating phases of
execution along the critical path is the same as the problem of finding frequently repeated substrings.
A preliminary implementation has been created using a dynamic programming technique to quickly
build up the sets of frequently occuring substrings. This implementation arbitrarily requires that
the frequently used substrings must have a minimum support level of 6, meaning that any candidate
substrings must appear at least six times in the whole string. The higher the minimum support
level, the faster the algorithm runs, but very long infrequent strings might not be observed.

The final output from the technique is the substring with maximal weighted coverage in the whole
string. The weighted coverage is calculated to be number of substring instances×(substring length)2.
This weighted coverage measurement favors frequently occurring repeated substrings while especially
favoring substrings with long lengths. Figure 10 shows a set of resulting repeated substrings, high-
lighted in the whole critical path. In the figure, each type of task is represented by a unique ASCII
character. Multiple iterations, and their corrsesponding repeated portions are visible in the figure.

The execution time for the frequent sub-path technique is shown in Figure 9. The method
appears to have linear execution time for the trace string produced by a run of OpenAtom, with
some beneficial cache effects for small strings. The actual worst-case performance is data dependent.
With a minimum support level of 6, it takes about 0.1 seconds to extract the frequent sub-path from
an OpenAtom critical path profile of length 1721.

8 Future Work

In addition to critical paths, there is other useful information contained in a PAG. Two specific types
of paths found in a PAG could be useful, namely Near Critical Paths and Parallelism Exposing Paths.
In the future, the utility of identifying these paths could be examined. We are currently investigating
new complex types of schedulers that use a PAG gathered at runtime to better schedule tasks,
whereas in this paper, a simpler scheduling mechanism just adjusted message priorities.

Near Critical Paths: Paths with duration close to duration of the critical path are useful
because they will become critical paths if the actual critical path is shortened. Hence, they can
provide a bound on the execution time improvement in the program when a critical path is optimized.

Parallelism Exposing Paths: Nodes in the PAG that lead to large amounts of execution time
across many tasks are important because they expose concurrency in the program. If these nodes,
and their preceding critical paths are scheduled at higher priorities than other work, the potential
concurrency in the program will be increased earlier in the program’s execution. This would result
in a potentially faster program. Although ideally all available concurrency ought to be exposed as
early as possible, there may be costs associated with the degree of concurrency, and in programs
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where this factor dominates, the paths exposing concurrency ought to be delayed. It is not yet clear
how useful such paths are, or how they would be computed from a distributed PAG.

9 Conclusion

This paper presented a novel type of adaptive behavior that can be performed within a parallel
runtime system. Specifically, for the first time, the paper described how to record critical paths
for a running message-driven parallel program. It was then shown how such critical paths can be
used for the online dynamic reconfiguration of the program. An example application, OpenAtom,
saw speedups of 10.2% when its message priorities were automatically reconfigured based upon
information extracted from an observed critical path profile.
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