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Abstract

Linear cellular automata have many invariant measures in general. There are several studies
on their rigidity: The unique invariant measure with a suitable non-degeneracy condition (such
as positive entropy or mixing property for the shift map) is the uniform measure — the most
natural one. This is related to study of the asymptotic randomization property: Iterates starting
from a large class of initial measures converge to the uniform measure (in Cesaro sense). In this
paper we consider one-dimensional linear cellular automata with neighborhood of size two, and
study limiting distributions starting from a class of shift-invariant probability measures. In the
two-state case, we characterize when iterates by addition modulo 2 cellular automata starting
from a convex combination of strong mixing probability measures can converge. This also gives
all invariant measures inside the class of those probability measures. We can obtain a similar
result for iterates by addition modulo an odd prime number cellular automata starting from
strong mixing probability measures.

Keywords: Linear cellular automata; stationary measures; limiting measures

1 Introduction

Let p be a prime number, and A = {0,1, -+ ,p — 1}. In this paper, we consider a transformation A
of a configuration space Q := A? = {w : Z — A} defined by

(Aw)(z) =w(zr—1)+w(z+1) modp

for w € Q and z € Z. This is called addition modulo p cellular automata. While the transformation
is quite simple, the iterates exhibit various complex and interesting behaviors. For the case p = 2,
it can be regarded as a one-dimensional version of life game ([6]; see also Exercise (2.6) of [11]).
On the other hand, before that a similar kind of transformations are studied as a special case of
probabilistic cellular automata in Russian literatures including [14, 15, 16] (see also [13]). Besides
the delta measure concentrated on the ‘all-zero’ configuration, the state given by fair coin tossing,
the ‘most random’ measure, is invariant under the transformation. After Wolfram’s classification
of one-dimensional “elementary” cellular automata [17], this transformation is called rule 90, and
some of important results in [6] are independently discovered by [3].

When the distribution of the initial configuration w is given by pu, the distribution of Aw is
denoted by Au. Central problems in studying the transformation A are the following:

o If Ap = p, then p is called A-invariant: What is the A-invariant measures?
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N—1
e What is the limiting behavior of A" u? How about the limit in Cesaro sense: lim — Z A" p?
N—oo N

n=0
Let @ = (0,601, -+ ,0,_1) be a probability distribution on A, namely

0, =0 forke A, and Zﬁkzl.
ke A

Let (w(x) : x € Z) be a doubly infinite sequence of independent, identically distributed random
variables satisfying
w(z) = k with probability 8, [k € Al.

The distribution of (w(z) : € Z) is denoted by ug, and called a product measure with density 6. In
particular, pg with

O = — [k‘E.A]
p

is called the uniform measure and is denoted by p,,. For a € A, the constant configuration
--aaa--- is denoted by a, and the delta measure concentrated on a, namely pug with

)1 (k=a),
9’“_{0 (k # a)

is denoted by d4. When p = 2, the product measure with §; = p and 0y = 1 — p is called the
Bernoulli measure with density p, and is denoted by 3,.

Suppose that p = 2 for the moment. Starting from a single 1, rule 90 generates Pascal’s triangle
mod 2 a.k.a. the pre-Sierpiriski gasket, which reflects the scaling relation (see Lemma 3.5 below)

(A2mw)(x) =wlz—-2")4wx+2") mod2 weR, xe€Z;m=0,1,2---].
From this, we have
Bo(A* " w)(2) =1) = By(w(z —2™) +w(x +2™) =1) =2p(1 —p) [m=0,1,2,---].
On the other hand, since

(A?" 1) (x) = Z w() mod2 weQ,zeZ; m=0,1,2,---],
j=wA2m=l42m=24...420

we can see that

lim ﬂp((Aszlw)(I) =1) = % if0<p<l

m—r oo

Miyamoto [6] and Lind [3] proved that
e lim A"j, exists if and only if p € {0,1/2,1}. B, is A-invariant if and only if p € {0,1/2}.

n—oo
N-1
e If 0 < p < 1, then the Cesaro mean N Z A"B, converges to 312 as N — oo.
n=0

Cai and Luo [1] extended the above result to p odd prime:

o lim A"pg exists if and only if 1p = do or p1/,. Thus those are only A-invariant measures in
n—oo

the class of product measures.
N—-1

1
e If 0, < 1 for all &k, then the Cesaro mean N Z A" g converges to py/, as N — oo.
n=0

The above results show that
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e The uniform measure is the only invariant measure among non-trivial product measures.

e Iterates starting from non-trivial product measures converge to the uniform measure in Cesaro
sense.

The former property is a kind of rigidity — under some condition excluding “degenerated” measures
(e.g. probability measures generated from periodic points), the only invariant measure is the uniform
one. Observations towards such a property can be found already in [16]. See [4] for a recent survey
and related references. The latter property is called asymptotic randomization — convergence to the
uniform measure for a large class of initial measures. Among several attempts to extend the class of
measures randomized by cellular automata, Pivato and Yassawi [9] introduced harmonically mizing
measures, and proved those measures they are randomized by non-trivial affine cellular automata.
Their theory can be applied to very general settings.

This paper is an extended version of [12]. We give some rigidity results for probability measures
with a mixing property with respect to the spatial shift; a general class including product measures.
The rest of the paper is organized as follows: In section 2 we explain our setting and state our
results. Preliminary facts are presented in section 3. Proofs of our results are given in sections 4
and 5.

2 Setting and results

We introduce several notions from ergodic theory, which are generalizations of properties of product
measures fig.

2.1 Borel probability measures on the configuration space

For a positive integer L, let

QL:AL = {0’:(0-1,0'2’... ,O'L):O'l,(fQ,"' ,OL eA}
For o = (01,02, ,01) € Q, and a € Z, put
[o]¢tt = (o102 oL )lt) ={weQiwlat+z) =0, (x=1,2,--- ,L)}.

Such a subset of § is called a cylinder set.

The o-algebra of events generated by all cylinder sets is denoted by B. Hereafter we treat
probability measures on (2, B), which are called Borel probability measures on : They are uniquely
determined by the probability of cylinder sets. For example, a product measure pg with density
0 = (6p,61,--- ,0,-1) is characterized by

L
no(lolgit) =[] 6o [0 €l (1)

r=1

for any a € Z.
For probability measures p; and ps, we write py = po if p1(A) = pa(A) for each cylinder set A.
For a sequence of probability measures {x,} and a probability measure p, we write lim p, = p if
n—oo

lim p,(A) = p(A) for each cylinder set A.
n—oo

2.2 Shift-invariant measures

By (1), the probability ug([a]gif ) is independent of a: This property is called shift-invariance of
1e. More precisely, we define a left shift transformation T of 2 by

(Tw)(z) =w(x+1) [ze€Z]
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The inverse transformation T-! is the right shift transformation. The n-fold iteration of T' (resp.
T—1) is denoted by T™ (resp. T—™). For an event A € B, let

T7"A={weN:T'we A} ={T "w:w € A}.
For example,
T™"olf ={w € Q: (T"w)(z) = 0z (r=1,2,--- , L)}
—{weQiwtn) = o, (2= 1,2, L)} =[],

where o € Q. A probability measure p on  is called shift-invariant if p(T~1A) = u(A) for all
A € B. This is equivalent to the following: For any L,n, and o = (01,09, - ,01) € Qp,

p(loliin) = u(lolr) -

This common value is often denoted by (o).

2.3 Mixing properties

The following property of ug is called pairwise independence: Let a,b € Z and L, L’ be positive
integers. If [a+ 1,a+ L] N[b+1,b+ L'] =0, then

pollolitt nlolptH) = mollolathmo((o )

for any o € Qp and o’ € Q.. In fact pg has a much stronger property called independence, which
asserts that ug-probability of an intersection of finitely many cylinder events with disjoint supports
is given by the product of pg-probability of each cylinder set.

Let u be a shift-invariant probability measure. Notions of asymptotic independence with respect
to shift transformations are called mizing properties. (See e.g. Chapter VII of [10].) u is called
strong mizing if

lim u(ANT™"B) = u(A)u(B)

n—00

for all A, B € B. This is equivalent to the following: Let L, L’ be positive integers. For any o €
and o’ € Qp,

u (1ol n1o1E) = e (lo]F) n (101F)
as n — 0o. More generally, p is called r-fold mixing if for A, By,--- , B, € B,
wANT™™ B N---NT™™B,.) = w(A)u(B1) -+ - u(By)

asmy —» 00, Ny — Ny —> 00 , -+, Ny — Nyp_1 — 00. Let M,. be the set of r-fold mixing probability
measures on §) (M is the set of strong mixing probability measures). Note that

MiDMyD--- DM D+
w is called K-mizing if for any A € B,
lim sup [u(ANB) — u(A)u(B)| =0,

n—0o0 Beg,,

where G, is the o-algebra generated by {w(i) : 4 = n}. It is known that u is K-mixing if and only if
the o-algebra

Goo 1= ﬂ Gn
n=1

is trivial with respect to p. Let M be the set of K-mixing probability measures on 2. It is also
known that

o0
Mc (M,
r=1
By the Kolmogorov 0-1 law, product measures pg are K-mixing: Thus they have all mixing properties
explained above.
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2.4 Results

For a set of probability measures P, the convex hull of P is defined by
Conv(P) := {/ wdm(p) : 7 is a probability measure on P} .
P

We obtain the following result for p = 2, which is an improvement of Theorem I1.2 in [12].

Theorem 2.1. Let p = 2. Assume that P € Conv(M;). Then A™P converges as n — oo if and
only if
P=afy+a'Byp+a b

for some «,a’,a” 2 0 with « + o/ + ¢” = 1. Thus P € Conv(M;) is a stationary measure for A if
and only if

P =afy+a'Bs
for some a,a’ 2 0 with a + o' = 1.
Our second result is for p > 2, which is an improvement of Theorem II.1 in [12].

Theorem 2.2. Let p be an odd prime number, and p be a shift-invariant, strong mixing probability
measure on {0,1,---,p— 1}2.
lim A"™p

n—oo

exists if and only if u = do or py/p. In particular, shift-invariant, strong mixing, A-invariant
probability measures are only those two.

Miyamoto [7] obtained an analogous result to Theorem 2.1 for P € Conv(M). (In fact, the
proof given in [7] works for P € Conv(M3).) Theorem 2.2 implies a result obtained by Marcovici
(Proposition 5.5 of [5] and Proposition 3.2.2 of [2]): If ;1 € M; has full support on  (i.e. positive
probability on each cylinder set) and A-invariant, then p = py,,. In the paper of Pivato [8], much
more general linear cellular automata are treated, and invariant measures in some classes of shift-
mixing probability measures are investigated.

3 Preliminaries

3.1 Fourier transform
Let i be a probability measure on = A%. For a configuration £ € Q, we put
#¢& := the number of x € Z with &(x) # 0.

Let 2:={£ € Q: #& < +oo}. For £ € E and w € 2, we define

(w) =) &@)w(x),

TEZ

and

Note that |z(€)| £ 1 and (0) = 1.
The following theorem is well-known: An elementary proof is found in [12].

Theorem 3.1 (the Fourier inversion formula). Let xg, 21 € Z with xg < 21, and

Eroa ={£€Q:€&(x)=0ifx <zgora>mz} CE.
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FOI‘ any (o'wm e aaxl) S Q(L‘1—(L‘0+17

1 2
M([cho .. .o'xl];é) = ]m Z exp ( T Z g )

As its corollaries,
e For probability measures p; and pg on €, if 71(€) = 2(€) for any € € =, then p; = pa.

e For a sequence {u,} of probability measures on 2 and a probability measure p on , if
lim [, (&) = ji(€) for any &€ € =, then lim p, = p.
n—oo n—o0

For example, let us calculate the Fourier transform of the product measure pg: Clearly j1g(0) = 1.
For any £ € £\ {0}, we have

o
(€)= [ e () ) nola
2
=TI [ew (X)) miw = T {Zekexp (Zew )} @
zEsupp & zesuppé \keA
where supp & := {z € Z : {(z) # 0}. In particular, the uniform measure 11, , satisfies that fi1,,() =

0 for any £ € =\ {0}.

3.2 Fourier transform and addition modulo p

We recall a ‘duality’ for addition modulo p (see e.g. section 2 of [1]).
Lemma 3.2. Let £ €c Zand w € Q. Forany n =1,2,---, (£, A"w) = (A", w).

Proof. For the case n =1,

(€ Aw) = &) - (Aw)() = Y &(2) - (w(z = 1) + w(z +1))

T€Z TEZ
=) (El+ D)+ -1) w@) =D (A)(@) - w(x) = (A& w).
T€Z z€EZ

Noting that #(Af) < 400 if #& < +00, we can show the lemma for the general n by induction. [

Lemma 3.3. A/@(g) = (A™¢) for any £ € E.

Proof. By Lemma 3.2,

8 = [ e (2Theam) ) ute) = [ e (A6 ) ) = 7A"S)

O
Besides the obvious A-invariant measure dq,
Lemma 3.4. The uniform measure p;, is A-invariant.
Proof. For £ € E\ {0}, since 0 < #(A¢) < 0o, Lemma 3.3 implies that
Apayp(€) = finyp(AE) = 0 = fi1/,(8).
O
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3.3 Strong mixing measures and addition modulo p
The following scaling relation is well-known, and found in section 4 of [1] among others.
Lemma 3.5. For any m =0,1,2,---,
(A" w)(z) = w(z —p™) +w(z +p™) mod p
for w e Q and z € Z.

Proof. Since p is prime, we can see that (1 +z)?" =1+ 2P" as {0,1,--- ,p — 1}-polynomials, from
which the conclusion follows. O

We use an important formula in the proof of Theorem 1 of [7]:

Lemma 3.6. If 4 € My, then

lim F(AP" p)(€) = [i(€)? for any £ € E.

m—r o0

Proof. We may assume that £ € £\ {0}. Lemma 3.5 implies that for any m,

PO (6 = [ e (264" ) uia)

2mi, m
— [eo [0S € (W)@ | nla)
@ 4 zESupp §
211 m 2mi m
e [ t@a—p) | e [ Y @@t p™) | pldw).
Q P c p
zEsupp§ z€supp§
Letting m — oo, we obtain the conclusion by the strong mixing property of pu. O

4 Limiting measures for addition modulo p

In this section, we prove Theorem 2.2. First we prepare a simple lemma.

Lemma 4.1. Let n > 1 be an integer, and {0}reo,1,.. n—1} be a probability distribution on
{0,1,--+ ,n — 1}. A necessary and sufficient condition for

n—1 .
2

E 01 exp (m . k)
n

k=0

is 0, = 1 for some k € {0,1,--- ,n —1}.

=1

Proof. Sufficiency is obvious. To show necessity, recall that for two complex numbers z and w,
|z + w| < |z] + |w| if and only if zw # 0 and arg z # argw. If 6,0,, > 0 for £,m € {0,1,--- ;n—1}
with ¢ # m, then we have

n—1 . n—1 . n—1
2mi 2mi
E ek exXp <n . k> < E ek exp (n . k) ‘ = E ok = 1,
k=0 k=0 k=0

a contradiction. O

1=

Let p be a prime number, and 0% := (0,0,---,0) € Qp = A"

Lemma 4.2. Suppose that u € M; and p(0F) > 0 for any L. If fi(¢) = 1 for some & € =\ {0},
then p = dg.
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Proof. Suppose that f(§) =1 for £ € = with

o (z = o), .
£(@) {O ST et
Since
RO = 3 s (awtan) = ) -exp (2701 ) =1

k=0

Lemma 4.1 implies that u (w(zg) = 0) = p (aw(z) = 0) = 1. By the shift-invariance, u = do.
Now we turn to the case ji(§) = 1 for some & € = with #& > 1. By the shift-invariance of p, we
can assume that there is a positive integer L such that

fx)=0if x <0 or x> L, and £(0),&(L) # 0.

Since

i) = pz_iﬂ (if(x)w(w) = ]4;) - exp (27‘1’2 . k) -1
k=0 i P ’

Lemma 4.1 implies that

L L
u (Z {(r)w(z) = ) = u <5<0>w<0) +)E@)w(x) = 0) =1
x=0

r=1

Using the shift-invariance of p, we can see that

7 (f(O)w(n) + iﬁ(w)w(x +n)=0forn=0,1,2,- ) =1.
On the event in the left hand side, if w(l +n) =w(2+n) =--- = w(L +n) = 0 for some n, then
w(0) = 0. This means that
u({(0) £ 0} 1 01442 = 0 for any n.
By the strong mixing property of pu, letting n — oo,
(w(0) #0) - u(07) = 0.

Since p(0%) > 0, we have
ww(0) #0) =0, ie p=7do.
This completes the proof. O

Now we prove Theorem 2.2. Let p be an odd prime number. We assume that p is strong mixing
and o := lim A"p exists. Noting that
n—oo

oo = lim AP" p,
m—0oQ
we obtain
fiss(§) = lim [(AP"€) = fi(&)?

by Lemmata 3.3 and 3.6. On the other hand, since the limiting probability measure po, is A-
invariant,

fiso(€) = F(A"10)(€) = Fio (A"€) = i(A"€)?
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for any n. Substituting n = p™ and letting m — oo, we have
fioo () = {1(6)%}? = m(&)",

again by Lemma 3.6. Thus we have 7i(£)? = 1(£)*. Since p is odd, Lemma 4.1 shows that 7i(¢) = 0
or 1. Noting that 72(0) = 1, Theorem 3.1 implies

a0 = = 3 e = HEEESL MO =15 L oy 1
p EEEL L p p

If 7i(§) = 1 for some & € Z\ {0}, then y = g by Lemma 4.2. Otherwise yt = 11 /,. This completes
the proof.

5 Limiting measures for rule 90

For the case p = 2, the Fourier transform is given by

and the Fourier inversion formula (Theorem 3.1) becomes
= 1 — 3% L))oz~
wlowy0nli)) = ooy Do ()7 =50 SO, (3)
£€8ag,21
By (2), we have
Lemma 5.1. B;(f) = (1 —2p)#¢ for any ¢ € =. In particular,

1 (5:: 0)7 o

Bo) =1, @(5){0 € 20)

Lemma 5.2. Suppose that y is a shift-invariant, strong mixing probability measure on = {0, 1}%.
If |f2(€)| =1 for some & € 2\ {0}, then u = By or u = .

Proof. We define a probability measure p * 1 on € by

(wrp)o) = 3 p(mulo —7) [0y,

TEQL

Note that F(u* p)(€) = u(€)? for any £ € Z. By (3),
1 1 1
(p* p)(0F) ——L Z (o p)( —2L Z 37#(0)2:27>0 for any L.
€5, §EE L

We can see that p* p is also shift-invariant and strong mixing: The shift-invariance is obvious. For
any o € Qp and o’ € Qp/, as n — oo,

I T B SR (T P (R T )
TEQL, TEQ

> > w1 ) (o = 7IE) e (fo - )

TEQL, T/EQL/

S wetute -} 5 (i)l -it) |

TEQL T'eQr

= (uep) ([o1F) - (ur ) (1))
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By Lemma 4.2, p* = [By. Since

(1 * p)(w(z) = 0) = p(w(z) = 0)* + pw(x) =1)* and  fo(w(x) =0) =1,

we can conclude that
ww(x)=0)=1or p(w(z)=1)=1.

By the shift-invariance, u = 8y or p = f. O

Now we prove Theorem 2.1. Suppose that
P= / wdm(u) € Conv(My),
My

where 7 is a probability measure on M;. Since Ay = By and AB; = [y, we can assume that
7({Bo, B1}) = 0. For £ € 2, we have

PO)= [ (e dniu)

Suppose that P, := lim A™P exists. Noting that P = lim A?" P, by Lemmata 3.3 and 3.6, and

n— 00 m—ro0
the bounded convergence theorem, we have

—

PL©) = Jim P9 = lim [ 30" ¢dn(n) = [ (e dn(o)

m—r 00 m— o0 Ml Ml

On the other hand, since the limiting probability measure P, is A-invariant,

Poo(€) = F(A"Px)(€) = Poo(A"€) = /M A(A™E)? dr(p) for any n.

Substituting n = 2™ and letting m — oo, we have
Pe© = [ 1a©*2dnn) = [ a(e)* dnin)
./\/11 Ml
again by Lemma 3.6 and the bounded convergence theorem. Thus we have

{1()* = (&)"} dm(p) = 0.

My
Since 7({Bo, f1}) = 0 and [i(£)* — fi(¢)* = 0, Lemma 5.2 shows that
m({pe My p(§) =0}) =1 for§ € E\ {0}.

By Lemma 5.1,

() {reMi:h(€) =0} = {B)2}.
£¢ez\{0}

Noting that =\ {0} is a countable set, we have m({f3/2}) = 1. This completes the proof.

6 Concluding remarks

In this paper, we study limiting measures of iterates of addition modulo p cellular automata, starting
from strong mixing measures. Our method can be applied to

(Lw)(z) =w(z) +w(z+1) modp
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as well. In this case, Lemma 3.2 should be replaced with (¢, £L"w) = ((£*)"{,w), where L* is defined
by
(L*'w)(z) =w(r — 1) +w(z) mod p.

One of future problems is to extend Theorem 2.1 to addition modulo p CA with p odd prime.
For addition modulo 3 CA, by Theorem 2.2, u € M is invariant if and only if u = do or pu = pi1/3.
We remark that

1 1
551 + 552 € COHV(Ml)

is another invariant measure.

Our method works well for linear rules with equal coefficients, but we have some troubles to
treat other linear rules — the simplest one is aw(xz — 1) + bw(x + 1) mod p with nonzero a # b. On
the other hand, it is possible to obtain analogous results for some linear rules depending on more
than two coordinates. As an example, we shall prove the following theorem for rule 150, which is
an improvement of Theorem 1’ in [7]:

Theorem 6.1. We consider the transformation A of Q = {0,1}% defined by
(1~\w) (z) =w(x—1)+wx)+wlx+1) mod?2

for w € Q@ and z € Z. Assume that P € Conv(Ms). Then the following three conditions are
equivalent to each other:

(i) A™P converges as n — co.

(i) P is A-invariant.

(iii) P = afo + o' By1/2 + "By for some o, o, 0" 2 0 with a + o' +a” = 1.
Proof. Since fy, 31/ and p; are A-invariant, we can see that (iii) = (i) = (i). Here we show that
(i) implies (iii). Suppose that P = / pdn(p) € Conv(Ms), where 7 is a probability measure on

Mz
M. We can assume that 7({5o, 51}) = 0. Rule 150 versions of Lemmata 3.2, 3.5 and 3.6 are:
o let{e=Zandwe D Foranyn=1,2,---, <§,/~\”w> = (X”ﬁ,w).

o For any m = 0,1,2,---, (A*"w)(z) = w(z — 2™) + w(z) + w(z + 2™) mod 2 for w € Q and
x € Z (Lemma 3’ in [7]).

e If p € My, then lim F(K2u) () = [i(€)? for any £ € =.

m—o0

Suppose that Py := lim A"P exists. As in the proof of Theorem 2.1, we have

n—oo

{a(©)° - f©)"} =0 (4)

Mo

for any £ € Z. Now we use a trick in the proof of Theorem 1’ in [7]: For any finite sequence €of0
and 1, let
&, =---000£00---0£000--- € E.

Since u € My C My, we have lim i(€,) = fi(---000€000---)?. Substituting &, into (4) and
n—oo

letting n — oo, we have / {ﬂ(§)6 - ﬁ(«f)lS} dm(p) =0 for any £ € E. Now we can conclude that
Ma
m({B1/2}) = 1. O
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