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Abstract

The computational power and the physical memory size of a single GPU device are often
insufficient for large-scale problems. Using CUDA, the user must explicitly partition such prob-
lems into several tasks repeating the data transfers and kernel executions. To use multiple
GPUs, explicit device switching is also needed. Furthermore, low-level hand optimizations such
as load balancing and determining task granularity are required to achieve high performance.
To handle large-scale problems without any additional user code, we introduce an implicit dy-
namic task scheduling scheme to our CUDA variation MESI-CUDA. MESI-CUDA is designed to
abstract the low-level GPU features; virtual shared variables and logical thread mappings hide
the complex memory hierarchy and physical characteristics. On the other hand, explicit parallel
execution using kernel functions is the same as in CUDA. In our scheme, each kernel invocation
in the user code is translated into a job submission to the runtime scheduler. The scheduler
partitions a job into tasks considering the device memory size and dynamically schedules them
to the available GPU devices. Thus the user can simply specify kernel invocations independent
of the execution environment. The evaluation result shows that our scheme can automatically
utilize heterogeneous GPU devices with small overhead.

Keywords: GPGPU, CUDA, parallel programming, compiler, optimization, scheduling

1 Introduction

GPUs (Graphics Processing Units) are widely used for high performance computing. Such usage
is called GPGPU (General Purpose computation on GPU). However, the computational power and
the physical memory size of a single GPU device are often insufficient for large-scale problems. One
solution to such cases is to partition the whole computation on GPU into multiple tasks and execute
them in turn on a single GPU or in parallel on multiple GPUs.

Using a standard GPGPU programming framework CUDA (Compute Unified Device Architec-
ture) [1], the user must implement such tasks and control them explicitly specifying GPU thread
invocations and data transfers. Device switching is also needed to use multiple GPUs. To achieve
high performance, tuning task granularity and load balancing is required. Such hand optimizations
are difficult and make the performance environment-dependent. An alternative framework Ope-
nACC [2] hides low-level API calls adopting directive-based approach like OpenMP [3]. However,
low-level directives are required for the optimizations. Moreover, the current version does not use
multiple GPUs automatically [4].
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Figure 1: GPU Architecture and Programming Model

To handle large-scale problems without any additional user code, we propose a dynamic schedul-
ing scheme introducing implicit tasks for our CUDA variation MESI-CUDA [5, 6, 7, 8]. MESI-CUDA
is designed to abstract the low-level GPU features; virtual shared variables and a logical thread map-
ping scheme hide the complex memory hierarchy and physical characteristics. The API calls for the
memory management and data transfers are not needed. The user’s thread mapping can be device-
independent. On the other hand, explicit parallel execution using kernel functions is the same as in
CUDA. The compiler translates user’s MESI-CUDA programs to CUDA programs generating low-
level code automatically. To achieve high performance without user’s specifications, the compiler
also makes static analysis and performs the optimizations.

The proposed scheme translates each kernel invocation in the user program into a job submission
to the runtime scheduler. The job consists of the kernel invocation and the corresponding data
transfers. Considering the device memory size, the scheduler dynamically partitions the job to tasks
and schedules them to the available GPU devices. Thus the user can simply specify kernel invocations
without considering the hardware limitations of the execution environment. The user program is
expected to be performance portable leaving the optimization to the compiler and runtime system.

This paper is organized as follows: Section 2 gives an introduction of GPU, CUDA, and MESI-
CUDA, discussing the current issue. Sections 3, 4 details our scheme and its implementation.
Section 5 shows the evaluation results and in Section 6 we discuss the related works. In Section 7,
we state the conclusion and future works.

2 Background

2.1 GPU and CUDA

Fig. 1a shows a typical architecture of a NVIDIA GPU card installed on a PC. The PC and the
card are called host and device, respectively.

An NVIDIA GPU is a collection of streaming multiprocessors (SM), which have certain number
of CUDA cores. All CUDA cores share a large off-chip device memory in the same way that all CPU
cores share the main memory (host memory). Furthermore, each SM has a small on-chip shared
memory, which is shared by all CUDA cores in the SM.

CUDA [1, 9, 10] is a GPGPU programming framework for NVIDIA GPUs. It supports C, C++,
and Fortran, providing small language extensions and many API functions. Fig. 2 shows a matrix
multiplication program using CUDA. The additional code required for parallel programming in
CUDA is shown underlined.

Kernel functions, declared with the device or global qualifier (Fig. 2 l. 5–13), are exe-
cuted on the device. The other functions (l. 14–32), called host functions in this paper, are executed
on the host. To start computation on the GPU, any host function can invoke a global kernel
function specifying the number of threads (l. 26). Then, the created GPU threads execute the kernel
function. In this paper, we simply call such GPU threads as threads.
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1 #define N 4096

2 #define BX 256

3 #define S (N*N*sizeof(int))

4 int ha[N][N], hb[N][N], hc[N][N];

5 __global__ void matmul(int a[][N], int b[][N], int c[][N]){

6 int k;

7 int row = blockDim.y*blockIdx.y+threadIdx.y;

8 int col = blockDim.x*blockIdx.x+threadIdx.x;

9 c[row][col] = 0;

10 for(k = 0 ; k < N ; k++){

11 c[row][col] += a[row][k] * b[k][col];

12 }

13 }

14 void init_array(int d[N][N]){. . .}
15 void output_array(int d[N][N]){. . .}
16 int main(int argc, char *argv[]){

17 int *da, *db, *dc;

18 dim3 dimGrid(N/BX, N);

19 cudaMalloc(&da, S);

20 cudaMalloc(&db, S);

21 cudaMalloc(&dc, S);

22 init_array(ha);

23 init_array(hb);

24 cudaMemcpy(da, (int*)ha, S, cudaMemcpyHostToDevice);

25 cudaMemcpy(db, (int*)hb, S, cudaMemcpyHostToDevice);

26 matmul<<<dimGrid, BX>>>((int(*)[N])da, (int(*)[N])db, (int(*)[N])dc);

27 cudaMemcpy((int*)hc, dc, S, cudaMemcpyDeviceToHost);

28 output_array(hc);

29 cudaFree(da);

30 cudaFree(db);

31 cudaFree(dc);

32 }

Figure 2: CUDA Program of Matrix Multiplication

CUDA uses grids and blocks for controlling the thread mapping to data and physical resources.
A block is a group of threads executed on the same SM, and a grid is a group of blocks of the same
size. On the invocation of a kernel function, an execution configuration must be specified using an
expression of the form <<<Dg, Db>>>. Dg and Db are the sizes of the grid and blocks, respectively.
They should be the values of integer or a built-in 3D vector type dim3. For example, Fig. 2 program
creates a grid of N/BX × N blocks and each block consists of BX threads (Fig. 2 l. 18, 26). Using
built-in variables to obtain grid/block sizes and block/thread indices, each thread can perform the
same computation on the different array element (l. 7–12).

To share the data between the CPU and GPU, memory allocations on both memories and
data transfers are required. The user must explicitly describe such low-level behaviors calling API
functions (l. 19–21, 24–25, 27, 29–31). The host-to-device and device-to-host data transfers are
called download and readback transfers, respectively.

If multiple devices are installed on the host, threads can run on the devices in parallel. However,
the user must explicitly control each device by switching the target device calling cudaSetDevice()

and specifying the data transfers and kernel executions individually.
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1 #define N 4096

2 __global__ int ga[N][N], gb[N][N], gc[N][N];

3 __global__ void matmul(int a[][N], int b[][N], int c[][N]){

4 int k;

5 int row = lThreadIdx.y;

6 int col = lThreadIdx.x;

7 c[row][col] = 0;

8 for(k = 0 ; k < N ; k++){

9 c[row][col] += a[row][k] * b[k][col];

10 }

11 }

12 void init_array(int d[N][N]){. . .}
13 void output_array(int d[N][N]){. . .}
14 int main(int argc, char *argv[]){

15 init_array(ga);

16 init_array(gb);

17 matmul<[<N, N>]>(ga, gb, gc);

18 output_array(gc);

19 }

Figure 3: MESI-CUDA Matrix Multiplication

2.2 MESI-CUDA

CUDA API directly reflects the complex GPU architecture. Although such low-level API enables
hand-tuning considering hardware specifications, it is difficult and not performance portable. There-
fore we are developing an easier programming framework MESI-CUDA [5, 6, 7, 8].

MESI-CUDA adopts a virtual shared memory model that all cores in both CPU and GPU share a
single global memory (Fig. 1b). Actually, only global variables defined with the global qualifier
are shared. To avoid confusion with variables defined with the shared qualifier, we call our
shared variables as virtual shared variables or VS variables. The values of VS variables are made
logically consistent on each kernel invocation, thus explicit synchronizations and mutual exclusions
are not needed.

On the other hand, we do not hide explicit parallelization using host and kernel functions. We
regard the difference of characteristics between CPU and CUDA cores is not negligible on HPC
programming. However, we hide SMs by introducing a logical specification of thread mapping [8]
and mapping optimization by the compiler.

Using MESI-CUDA, Fig. 2 program can be simplified as shown in Fig. 3. The additional code
required for parallel programming in MESI-CUDA is shown underlined. The arrays for 2D matrices
can be defined as VS variables (Fig. 3 l. 2) thus they can be accessed from both host and kernel
functions (l. 7, 9, 15-18). The number of threads can be simply specified as N×N (l. 17). Thus, the
user can concentrate on parallel algorithm without low-level API functions.

The MESI-CUDA compiler is implemented as a translator to CUDA code. The low-level code
such as the memory management and data transfers is automatically generated. The definitions of
VS variables are replaced with the memory allocations and deallocations of the same size on both
host and device memories. For the VS variables accessed in the kernel functions, download and
readback transfer code is inserted before and after each kernel invocation. Logical thread mappings
are also converted to the block-based mapping specifications of CUDA.

To achieve high-performance without user’s hand-tuning, the compiler performs optimizations
based on the static analysis. For this purpose, we have developed automatic optimization schemes
such as overlapping thread executions and data transfers [5], explicit cache using shared memories [7],
and thread mappings improving the device memory accesses [8].
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2.3 Current Issue

Since GPUs do not support virtual memory, the amount of available memory space in each kernel
is limited to the size of device memory, which is currently 12GB at maximum. Therefore, large-
scale computation cannot be executed in a single kernel invocation if the total size of input/output
arrays exceeds the device memory size (Fig. 4a). In most cases, the accessed ranges of the arrays in
each thread are limited. Thus the computation can be partitioned into multiple kernel invocations
reducing the transfer for each array to the size of accessed range (Fig. 4b).

The computational power of a GPU device may also be insufficient for large-scale problems.
Although CUDA enables to create huge number of threads, concurrent or parallel execution of
threads and blocks is limited by the physical resources, such as the number of SMs and the sizes
of shared memories and register files (Fig. 5a). If multiple GPUs are available, partitioning such a
huge kernel invocation into multiple invocations on the devices will reduce the total execution time
(Fig. 5b).

Current MESI-CUDA has no support for such cases. However, they should also be handled by the
compiler and runtime system without any user’s specification, hiding low-level and device-dependent
features.

3 Proposed Scheme

We propose a new scheme for MESI-CUDA which automatically partitions kernel invocations and
execute them on the available GPUs. To keep compatibility with current MESI-CUDA programs,
we introduce implicit creation and dynamic scheduling of jobs and tasks.
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Figure 6: Dynamic Scheduling of Kernel Execution

3.1 Basic Execution Model

A kernel invocation in a MESI-CUDA program is semantically a GPU-accelerated function call.
The user expects the kernel is executed immediately and the values of VS variables are updated
before the first reference succeeding the invocation. To enable dynamic scheduling without changing
this semantics, each kernel invocation and the corresponding data transfers are replaced with a job
submission to the runtime scheduler. A job consists of the kernel invocation and data transfers of VS
variables read or written during the kernel execution. By partitioning the job, the scheduler creates
tasks. The threads in the original kernel invocation are partitioned into multiple groups and the
data transfers are also partitioned or duplicated considering the access ranges of the group. Finally,
the tasks are dynamically scheduled to the available GPU devices. A synchronization is performed
before the host function accesses any result to ensure all tasks of the job are completed. (Fig. 6).

We expect our target programs satisfy the following assumptions:

A1) VS variables are arrays and all indices are affine expressions of thread indices and loop variables.

A2) Each thread writes to VS variables within consecutive ranges, which are not read/written by
any other thread of the same invocation.

A3) Inter-block synchronization functions, such as atomicAdd() and threadfence(), are not
used.

Assuming A3, A2 must be satisfied for deterministic result.

3.2 Converting Kernel Invocation to Job

A kernel invocation and the corresponding data transfers, submitted as a job, must be performed
later by the runtime scheduler. However, our current implementation statically inserts code for them
in the host function. Therefore, the compiler is modified to extract the code as callback functions:
for each job, functions for the kernel invocation, download transfers, and readback transfers are
generated. We call these functions task functions because actually they are called when each task
of the job is scheduled. The pointers of the corresponding task functions are passed on the job
submission so the scheduler can call the functions when needed.

The input values of the kernel function also must be saved for the later execution. The kernel
function arguments are usually scalar values because CUDA limits their total size. Thus they can be
passed on the submission and stored in the scheduler. On the other hand, VS variables are expected
to be large arrays and duplicating them to save the current values is not practical. Therefore, the
scheduler controls the progress of the execution in the host function. In our current implementation,
the compiler assures that host functions can access the latest values of the VS variables; for each
VS variable written in the kernel function, synchronization code is inserted before the earliest read
succeeding the kernel invocation. Similarly, our new scheme also inserts synchronization code to
prevent overwriting values required on the kernel invocation; for each VS variable read in the kernel
function, synchronization code is inserted before the earliest write succeeding the job submission.
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3.3 Partitioning Job to Tasks

Assuming A2 and A3 in Section 3.1 are satisfied, each thread block of a kernel invocation can be
executed independently. Therefore, the thread block can be the unit of job partitioning.

In our scheme, a consecutive segment of thread blocks in the original kernel invocation is assigned
to a task (Fig. 7). Adopting a single and consecutive segment, the assignment to each task can be
expressed using two integer values b, s, which are the starting block index and the number of blocks
of the segment, respectively. In addition, assigning neighboring blocks to a task can expect smaller
access ranges in the task because our current scheme optimizes the thread mapping to improve
access locality on VS variables [8]. On the other hand, the size of each task, i. e. the number of
assigned thread blocks, can be tuned for the optimization. Each task should execute enough blocks
to keep the GPU occupancy high, while fewer blocks will reduce the required memory size per task
and also provide enough tasks for dynamic load balancing. We do not modify the size of thread
blocks because it is automatically determined in the mapping optimization scheme [8] to optimize
the execution efficiency in the block. We expect practical programs have enough number of blocks for
task partitioning and we regard the disadvantages of disturbing the mapping optimization outweigh
the advantages of resizing the block size for the new scheme.

To execute a task, the scheduler must perform the kernel invocation reducing the number of
thread blocks to s. The ranges of the corresponding data transfers also must be limited to the access
ranges within the task. Assuming A1 and A2 are satisfied, our static analysis can obtain the access
ranges of VS variables within a thread block [8]. Therefore, the required range is computed using b
and s on the data transfer of each VS variable v.

The memory allocations on the device memory and the array accesses in kernel functions are also
modified. On the device memory, the size allocated for v is reduced to the maximum size of access
range in the tasks. Although the code in kernel functions expect original block indices, adjusting
them requires only constant offsets because consecutive blocks are assigned to a task.

3.4 Optimization

3.4.1 Issues and Strategies

Introducing implicit tasks and dynamic scheduling enables utilizing GPU resources without addi-
tional user’s specifications. However, it may also cause redundant data transfers and make the
execution inefficient.

In our basic execution model, each task performs download and readback transfers of its read
and write access ranges in VS variables. Although it ensures that tasks are independent each other
and enables the scheduler to assign any task to any device, unnecessary transfers may occur. First,
the same data will be transferred on the execution of each task if tasks reading the same range of
a VS variable are assigned to the same device. Fig. 8 shows an example that tasks of job 0 update
exclusive ranges of a VS variable a and read all elements of b. The transfer of b for the task 2
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Figure 8: Redundant Data Transfers for Tasks

is redundant because it is already transferred to the device for the task 0. Second, unnecessary
transfers between the host and devices occur if a VS variable is iteratively updated by similar jobs.
In the Fig. 8 example, the job 0 is submitted multiple times and the task 0 of each job updates the
same range of a. If the intermediate values are not read on the host and the corresponding tasks
are assigned to the same device, the updated range of a can be retained on the device memory.
However, our execution model forces readback and download transfers on each iteration because the
succeeding tasks may run on the different devices.

To suppress such inefficient behaviors, we introduce two techniques: reusing transferred data and
fixing task-device mapping. To apply the techniques, we assume the task sizes are fixed for each
invocation occurrence in the code.

3.4.2 Data Reusing

To share the transferred data between tasks on the same device, we introduce a dynamic management
scheme of VS segments. A VS segment is a partial copy of a VS array variable which contains the
array elements within the access range of a task. On the execution of the task, corresponding
segments of input VS variables must exist on the device before starting the threads. Instead of
allocating and reusing a single area on the device memory for the tasks of a same job, dynamic
memory allocation is performed for each segment within the memory capacity.

VS segments can be regarded as caching data from the host memory to each device memories.
Therefore, we need a dynamic management scheme to keep the consistency of segments. However,
our management problem is much simpler compared with the generic cache coherence problems.
First, device memory allocations and data transfers are performed only by the single scheduler thread
running on the host. Thus the segments do not require concurrent management; unique management
table on the host can be maintained and used by the scheduler thread. Second, detecting device
memory accesses at runtime and updating the management table on the host will cause enormous
overhead. Therefore, similarly as our other optimization techniques [5, 7, 8], we make static analysis
of kernel functions and use the result to identify read/write in the tasks; if the corresponding kernel
function has any execution path reading or writing the segment, the task is regarded to read or write
the segment, respectively. According to the analysis result, code requesting the scheduler to change
the segment state is statically inserted in the task functions.

For each VS variable vk, a segment table Tk is created. We denote the ith segment of vk on a
device dj as sk(i, j). Each segment sk(i, j) has an entry in Tk which consists of pk(i, j), a pointer to
the allocated memory area, and fk(i, j), a valid flag of the the segment. On the execution of a task
t on a device dj , data transfers and segment table management are performed as follows:

1. On starting t, for each segment sk(i, j) accessed in t:

(a) If pk(i, j) is null, allocate memory for the segment and store the pointer. fk(i, j) is
initialized as Invalid.
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(b) If sk(i, j) is read in t and fk(i, j) is Invalid, perform a data transfer and change fk(i, j)
to Valid.

(c) If sk(i, j) is written in t, change all fk(i, j′) to Invalid where j′ 6= j.

Note that if sk(i, j) is both read and written, i. e. updated, (b) and (c) are both applied.

2. On finishing t, for each segment sk(i, j) written in t:

(a) If the segment values are read in the host code, perform a readback transfer.

In this scheme, the segments updated by a task are transferred back to the host only if they are
read on the host (2a). Otherwise, the latest values are retained on the device memory. Similarly,
the data transfer is skipped if the segment has the latest values (1b). However, in the case that the
segment is invalid, a data transfer from the appropriate source is needed; the latest values may be
either on the host or other devices. Using static analysis result, the compiler can identify whether
the latest write occurs in host functions or kernel functions. Therefore the compiler statically select
the transfer code: a download transfer from the host or a device-to-device transfer. For the latter
case, the source device is dynamically determined by the runtime system. It checks the segment
table and find the device whose corresponding entry is valid.

Fig. 9 illustrates segments and tables when the task 1 of the first job 0 submission has started
in Fig. 8. When the task 2 is scheduled, it requires a download transfer for a new segment of a.
However, the transfer for b is not needed because the segment is shared with the preceding task 0.
Similarly, the task 0 of the second job 0 submission can reuse the segment of a. Therefore, data
transfers are reduced as shown in Fig. 10.
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3.4.3 Fixed Task-Device Mapping

Dynamic reusing of VS segments can eliminate redundant transfers only if tasks sharing the same
segment are assigned to the same device. For example in Fig. 10, the task 0 of second job 0 submission
cannot reuse the segment of a if it is executed on the device 1.

However, generic task scheduling strategy considering the reusability is not easy. Immediate
assignment to an idle device without the required segment may or may not be better than waiting
for the device with the segment to be idle. Therefore, we use a simple optimization strategy. The
occurrence of a kernel invocation in a loop causes multiple execution of similar kernel threads.
In many cases like step simulations, the thread block of the same block index in each execution
accesses the same range of VS variables. For each invocation occurrence, the scheduler maintains
a task mapping table that records the assigned device of each task. If the invocation occurrence is
executed again, the tasks are mapped to the devices in the same way as in the previous execution
so that the VS segments on each device can be reused.

For example in Fig. 9, the task 0 and 1 of the first job 0 submission have been executed and
the task mapping table for the job 0 records their assigned devices. On the execution of the task 2
in the first submission, the device will be dynamically determined because the corresponding entry
of the table is invalid. When the task 0 of the second job 0 submission is executed later, it will be
assigned to the device 0 according to the table entry.

4 Implementation

4.1 Data Structure

The jobs and tasks are managed using job and task records shown in Fig. 11. A job record contains
a job ID, pointers to task functions and an array of union holding kernel invocation arguments.
Other fields are used to control job behavior; the number of unfinished blocks, the task size of the
job, a flag for fixing task-device mapping, and condition and mutex variables for synchronizing with
the user code. A task record contains a task ID, a pointer to the corresponding job record, and the
number of assigned blocks.

A unique job ID is assigned to each occurrence of the job submission in the code, not to each job
instance. It is used to identify similar jobs for reusing task-device mapping. As for the task ID, it
is locally unique; regarding tasks in a job as an array of tasks, it is the index of each task and used
to identify its data access range.

To implement the optimization techniques in Section 3.4, we also use VS segment tables and task
mapping tables. For each VS variable, a 2-dimensional array of size ns×nd is created as the segment
table, where ns and nd are the numbers of segments and available devices, respectively. As explained
in Section 3.4.2, each array element is a struct of a pointer to the allocated memory area and a valid
flag. Similarly, for each occurrence of a job submission in the code, an integer array of size nt is
created as the task mapping table where nt is the number of tasks in the job. Each array element
stores the device ID which the corresponding task is assigned on the preceding execution of the job.
The number of tables and each size depends on both user programs and execution environments.
For example, the numbers of kernel invocation occurrences in the code and available GPU devices
are needed. Therefore, the runtime system dynamically creates the tables on demand.

4.2 Code Translation

The compiler first performs the original code translation; the memory management and data transfer
code is generated and the logical mappings are converted to the CUDA thread mappings. Then the
following procedures are applied to translate it into the code using dynamic scheduling. As an
example, Figs. 12, 13 shows the result of code translation on Fig. 3 program. For simplicity, we
assume the size of each task is a multiple of N/ B, i. e. the computation of a row is not partitioned
to multiple tasks.
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typedef struct _job_record{

int id;

void (*malloc_func)(int tid, int ts);

void (*dl_func)(int tid, int ts);

void (*rb_func)(int tid, int ts);

void (*update_func)(int tid, int ts);

void (*exe_func)(struct _job_record *job, int tid, int ts, cudaStream st);

union {

char c; int n; . . ., _segtable_t *p;

} args[ARG_MAX];

int block_ctr, task_size, fix_device;

pthread_mutex_t dl_mutex, rb_mutex;

pthread_cond_t dl_cond, rb_cond;

struct _job_record *next;

} _job_record_t;

typedef struct _task_record{

int id;

_job_record_t *job;

int block_num;

struct _task_record *next;

} _task_record_t;

Figure 11: Job/Task Records

4.2.1 Initialization and Finalization

At the beginning and end of the program, function calls for initializing and finalizing the runtime
scheduler are inserted, respectively (Fig. 12 l. 17, 39). To enable reusing VS segments, the usage
of the device memory is encapsulated in the runtime system. Pointers for the device memory are
modified to point corresponding segment tables (l. 15). Each device memory allocation for a VS
variable is replaced with the creation of a segment table (l. 21–23).

4.2.2 Task Functions

For each occurrence of a kernel invocation in the code, a set of task functions are generated.

The runtime system must allocate memory area for each task on demand because the device
memory allocations for VS variables are removed from the initialization code. Required VS segments
and their sizes depend on the user code while device memory management is hidden in the runtime
system. Thus the runtime system calls a malloc task function which demands all VS segments
required by the task. In the case of Fig. 3 program, each task accesses exclusive ranges of ga and
gc but accesses all range of gb. For the former variables, the compiler generates code specifying
multiple segments, each exclusively used by the corresponding task. For the latter variable, the
compiler generates code specifying single segment which is shared by all tasks (Fig. 13 l. 41–45).
The runtime system checks the segment table for each demand and allocate memory of specified size
if the segment is invalid.

Download and readback transfers are also extracted as download and readback task functions
(l. 46–51, 52–55). The functions compute required range of each transfer using the arguments tid

(task ID) and ts (number of blocks). The addresses of target segments, required for the data
transfer, are obtained from the segment table and segment index. Instead of calling cudaMemcpy()

directly, code requesting the runtime system to transfer the data is inserted. Therefore, the low-level
control of the devices is hidden from the task function. It also enables the runtime system to skip
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1 #define N 4096

2 #define _B 256

3 __global__ void matmul(int _b, int a[][N], int b[][N], int c[][N]){

4 int k;

5 int row = (blockIdx.x+_b-_b) / (N / _B);

6 int col = (blockIdx.x+_b) % (N / _B) * _B + threadIdx.x;

7 c[row][col] = 0;

8 for(k = 0 ; k < N ; k++){

9 c[row][col] += a[row][k] * b[k][col];

10 }

11 }

12 void init_array(int d[N][N]){. . .}
13 void output_array(int d[N][N]){. . .}
14 int *_h_ga, *_h_gb, *_h_gc;

15 _segtable_t *_s_ga, *_s_gb, *_s_gc;

16 int main(int argc, char *argv[]){

17 _scheduler_init();

18 cudaMallocHost((void**)&_h_ga, sizeof(int)*N*N);

19 cudaMallocHost((void**)&_h_gb, sizeof(int)*N*N);

20 cudaMallocHost((void**)&_h_gc, sizeof(int)*N*N);

21 _s_ga_ = _scheduler_create_segtable();

22 _s_gb_ = _scheduler_create_segtable();

23 _s_gc_ = _scheduler_create_segtable();

24 init_array((int (*)[N])_h_ga);

25 init_array((int (*)[N])_h_gb);

26 _job_record_t *_job = _scheduler_get_job_record();

27 _job->id = 0;

28 _job->malloc_func = _malloc_matmul_0;

29 _job->dl_func = _dl_matmul_0;

30 _job->rb_func = _rb_matmul_0;

31 _job->exe_func = _exe_matmul_0;

32 _job->args[0].p = _s_ga;

33 _job->args[1].p = _s_gb;

34 _job->args[2].p = _s_gc;

35 _job->block_ctr = N*N/_B;

36 _scheduler_submit(_job);

37 _scheduler_wait_job_end(_job);

38 output_array((int (*)[N])_h_gc);

39 _scheduler_terminate();

40 }

Figure 12: Dynamic Scheduling-based Code Generated from Fig. 3 Program

transfers for valid segments.
The kernel invocation in the original code is moved to the execution task function (l. 56–61) with

some modifications. The number of thread blocks are reduced to the task size ts and the start block
index tid*bs is passed to the kernel function. Similar to the transfer task functions, the addresses
of segments are obtained and passed as the arguments of the kernel function.

4.2.3 Job Submission

Instead of the original kernel invocation, the code submitting a job to the scheduler is inserted.
To create a job, a job record is obtained from the scheduler (Fig. 12 l. 26) and the code setting

301



Dynamic Task Scheduling Scheme for a GPGPU Programming Framework

41 void _malloc_matmul_0(int tid, int ts){

42 _scheduler_segmalloc(_s_ga, tid, ts*_B*sizeof(int));

43 _scheduler_segmalloc(_s_gb, 0, sizeof(int)*N*N);

44 _scheduler_segmalloc(_s_gc, tid, ts*_B*sizeof(int));

45 }

46 void _dl_matmul_0(int tid, int ts){

47 void *d_ga = _scheduler_segtable2addr(_s_ga, tid);

48 void *d_gb = _scheduler_segtable2addr(_s_gb, 0);

49 _scheduler_memcpy_h2d(d_ga, _h_ga+tid*ts*_B, ts*_B*sizeof(int));

50 _scheduler_memcpy_h2d(d_gb, _h_gb, sizeof(int)*N*N);

51 }

52 void _rb_matmul_0(int tid, int ts){

53 void *d_gc = _scheduler_segtable2addr(_s_gc, tid);

54 _scheduler_memcpy_d2h(_h_gc+tid*ts*_B, d_gc, ts*_B*sizeof(int));

55 }

56 void _exe_matmul_0(_job_record_t *job, int tid, int ts, cudaStream_t st){

57 void *d_ga = _scheduler_segtable2addr(job->args[0].p, tid);

58 void *d_gb = _scheduler_segtable2addr(job->args[1].p, 0);

59 void *d_gc = _scheduler_segtable2addr(job->args[2].p, tid);

60 matmul<<<ts, _B, 0, st>>>

(tid*ts, (int (*)[N])d_ga, (int (*)[N])d_gb, (int (*)[N])d_gc);

61 }

Figure 13: Task Functions Code Generated from Fig. 3 Program

the record members is inserted. First, the pointers to the task functions of the job are assigned
(l. 28–31). Second, the argument values of the kernel function are saved in the job record (l. 32–34).
Because the number and types of arguments differ in each kernel function, the job record has an
array of union. On the job creation, the arguments are assigned to the array using appropriate
union members. The number of arguments and each type are not needed to be saved because the
arguments are handled by the execution task function and the scheduler does not directly access
them. Third, the total number of thread blocks is stored in block ctr for checking the completion
of all tasks. (l. 35). And finally, the record is passed to the scheduler to submit the job (l. 36).

After submitting a job, the scheduler asynchronously executes it as multiple tasks. Therefore, the
user code continues its execution. However, it must wait for the job to be finished before accessing
the result. For this purpose, synchronization code is inserted (l. 37) which makes the caller suspended
until the specified job is completed.

4.2.4 Kernel Functions

To adjust block indices, the starting block index b is passed to the kernel function. Each occurrence
of blockIdx.x is replaced with blockIdx.x+ b (Fig. 12 l. 5–6). For index expressions of a and c,
another offset - b is required because they are truncated on the device memory. In this code, row
only occurs in the index expressions of a and c, while col only occurs in the index expressions of b.
Thus the offset - b is added to row (l. 5).

4.3 Scheduler

The runtime scheduler accepts job submissions from the user code, watches available devices, and
assigns a task when an idle device is detected. To enable asynchronous dynamic scheduling,
scheduler init() (Fig. 12 l. 17) creates a scheduler thread on the host. On the initialization,

the scheduler checks available devices and allocates CUDA streams for each device. The streams are
used for the concurrent execution of data transfers and kernel invocations on the devices.
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Table 1: Evaluation Programs
matmul matrix multiplication of Fig. 3 (N=8192)
ep The Embarrassingly Parallel in NPB [11] (class D)
hotspot 2D transient thermal simulation [12] (size:81922, 1000 steps)

Table 2: Evaluation Environments
CPU Memory GPUs

host 1 Xeon E5-2630 2.4GHz×2 32GB Tesla K80
host 2 Core i7-4820K 3.7GHz 16GB GeForce GTX TITAN, GeForce GTX 680

The scheduler thread watches the job queue and devices. When scheduler submit() is called in
the host function (l. 36), the job record is enqueued to the job queue. The scheduler thread dequeues
a job, create tasks for each idle device. To execute each task, the scheduler calls corresponding task
functions. Because each function issues asynchronous data transfers and a kernel invocation to the
specified stream, download transfers, a kernel invocation, and readback transfers are booked to be
executed sequentially.

When a kernel execution is finished on a device, the booked readback transfers are automatically
executed by the stream. However, the scheduler must check if all tasks of a job are completed
and notify it to the user thread because the user code waits for the completion of submitted jobs.
The completion order of tasks is nondeterministic on multiple GPUs. Therefore, the block counter
block ctr of the job record is used to detect the completion of all tasks of the job; the number
of blocks in each task, stored in the block num member of the task record, is subtracted from the
block counter when the task is finished. If the counter value reaches zero, all blocks of the job is
completed. Then the scheduler sends a signal to the condition variable of the job record, which
wakes the user thread if it is suspended calling scheduler wait job end()(l. 37).

5 Evaluation

We evaluated our scheme using three benchmark programs shown in Table 1. As the evaluation
environments, we used two hosts shown in Table 2. Tesla K80 has two same GPUs on the board
and is recognized as two devices by the software. Thus the host 1 can be used as a homogeneous
multi-GPU environment. On the other hand, two different GPU devices are installed on the host 2
and can be used as a heterogeneous multi-GPU environment. In the following sections, we use the
notations ‘K80(2)’ and ‘TITAN+680’ for these hosts when both devices are enabled. If only a single
GPU is enabled, we use the notations ‘K80(1)’, ‘TITAN’, and ‘680’, corresponding to the available
device.

5.1 Speedup using Proposed Scheme

We compared the execution time of each benchmark program using the current MESI-CUDA im-
plementation (‘original’) and the new implementation adopting the proposed scheme (‘proposed’).
The results are shown in Fig. 14.

To execute the original versions on multi-GPU environments, we manually made minimum mod-
ifications; thread blocks are statically partitioned in equal and each original kernel invocation is
replaced with two invocations for each device. Thus the workloads are statically scheduled without
considering the performance of devices. For the proposed versions, the original kernel invocations are
converted into jobs, partitioned into tasks, and dynamically scheduled using master-worker load bal-
ancing. On single-GPU environments, the original versions are executed without the modifications
while the proposed versions always perform dynamic task scheduling.
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On single GPU, applying our scheme to matmul slightly increased the execution time (Fig. 14a).
Compared with the original version which invokes the kernel only once, the proposed version invokes
the kernel for each task. However, the result shows such overhead is negligible. On K80(2), the
proposed version caused similar slowdown. The simple static scheduling of the original version can
achieve best performance to execute uniform computations on homogeneous multi-GPUs thus the
proposed version has no advantage in this case. However, the result shows the overhead of dynamic
scheduling on multi-GPUs is also negligible. On the other hand, the execution time of the proposed
version was reduced to 76% of the original on TITAN+680, due to the dynamic load balancing.

Applying our scheme to ep, the execution time was reduced on two single GPU environments
K80(1) and 680 (Fig. 14b). To handle large problem space, the original version invokes the kernel
multiple times. As explained in Section 4.3, our implementation of dynamic scheduling uses CUDA
streams. Therefore, the kernel executions and data transfers can be overlapped in the proposed
version. Because the execution time largely differs on TITAN and 680, the original version on
TITAN+680 is slower than on single TITAN. Due to the dynamic load balancing, the execution
time of the proposed version on TITAN+680 is 40% of the original and 90% of the execution time
on single TITAN.

Simply applying our scheme to hotspot caused drastic slowdown (Fig. 14c). Because it is a
step simulation program that iteratively executes similar jobs, redundant data transfers occur as
explained in Section 3.4.1. Applying the optimization schemes described in Sections 3.4.2 and 3.4.3,
the execution time of the proposed version was improved as shown in Fig. 14d. Compared with the
original version, the overhead on single GPU and homogeneous multi-GPUs are negligible. On the
heterogeneous multi-GPUs, the execution time is reduced to 89% of the original.

The evaluation result shows that the execution time ratio between different devices largely de-
pends on the target applications. Therefore, appropriate static load balancing for heterogeneous
multi-GPUs is difficult even if the execution environment is known at compile time. Our scheme
performs dynamic load balancing without any specification for multi-GPUs. Thus it can achieve
better performance without user’s additional effort.

5.2 Impact of Task Granularity

To evaluate the impact of task granularity to the execution time, we compared the execution time
of the proposed version changing the number of tasks per job. The result is shown in Fig. 15. The
performance of 2 tasks per job is approximately same as the performance of the original version
because each device runs only one task of the same size.

The result of matmul (Fig. 15a) shows that 8 tasks per job can reduce the execution time on
TITAN+680 compared with 2 or 4 tasks per job. As shown in Fig. 14a, TITAN and 680 shows
different performance on executing matmul tasks and 4 tasks or less cannot balance the load properly.
Increasing tasks to 16 or more did not achieve further improvement. The execution time on single
GPU and K80(1) are slightly affected by the number of tasks. In this case, 8 tasks would be enough
for the load-balancing but the overhead increase is negligible up to 128 tasks.

On the other hand, the execution time of ep (Fig. 15b) is much sensitive to the task granularity.
The best performance is achieved with 16 tasks per job on TITAN+680, and 64 or more tasks largely
increase the execution time. It is notable that the task granularity largely affects the performance
even on single GPU and homogeneous multi-GPUs, and the best number of tasks is dependent to
the devices. While 680, K80(1), and K80(2) achieve best performance with 64 tasks, increasing
number of tasks always declines the performance on TITAN. As shown in Fig. 14b, the proposed
scheme improved the performance on 680, K80(1) and K80(2) but not on TITAN. The efficiency of
overlapping executions and transfers would have been affected by the task granularity on the former
environments. On the other hand, such effect is not achieved on the latter environment thus larger
number of tasks simply increased the overhead.

Applying the optimization schemes, the result of hotspot (Fig. 15c) shows behaviors similar to
matmul; 8 tasks per job reduced the execution time on the heterogeneous multi-GPUs. However,
the overhead increase of smaller task granularity is not negligible in this case. On all environments,
64 or more tasks should be avoided.
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Figure 14: Execution Time

As we mentioned in Section 3.3, the task granularity causes a trade-off. Larger number of tasks
reduces required memory per task and enables flexible load-balancing. However, the scheduling
overhead will be increased, and the GPU occupancy may be declined because thread blocks per
task is reduced. To avoid the latter disadvantages, the number of tasks should be suppressed.
The optimal number of partitioning depends on both target program and execution environment.
Developing an automatic tuning scheme of the task granularity will be our future work. Especially,
granularity-sensitive cases like ep need more evaluations and investigations. However, the current
evaluation result shows a rough strategy; if enough memory is available, partitioning each job to
8–16 tasks will be sufficient for load-balancing two devices and can minimize the drawbacks.

6 Related Works

AMGE [13] also provides a programming framework which automatically decomposes a kernel in-
vocation for multiple GPUs. Although static analysis and code translation are also used, it is a
runtime-based system which allocates arrays to distributed device memories and provides trans-
parent access from the kernel functions. On the other hand, our scheme is mainly compiler-based
approach with the minimum runtime system, transforming code for various optimizations. We also
support partitioned execution on the same device for the case that the data size exceeds total size
of device memories.

Wende et al. proposes a reordering scheme of kernel invocations [14]. As opposed to our scheme,
they target concurrent execution of small-scale multiple kernels on a single device. However, similar
technique may improve the performance of our scheme when tasks of different jobs can be overlapped.

Chen et al. proposes a task-based dynamic load-balancing scheme for single and multi GPU
environments [15]. Their idea is to launch persistent threads on GPUs which executes tasks on
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Figure 15: Impact of Task Granularity

demand. The host code only need to enqueue tasks to the task queue and the task mapping to
available devices can be hidden in the runtime system. Although such approach can eliminate the
overhead of kernel invocations, it may cause certain inefficiency. The optimal size of thread blocks
depends on the usage of registers and shared memories per thread thus it should be tuned for each
kernel function. In MESI-CUDA, thread mapping including the block size is determined for each
kernel invocation based on the static analysis of user code.

Huynh et al. proposes a framework which maps workloads to multi-GPU environments [16].
Their scheme is based on graph partitioning and has shown scalable performance. However, the
scheme targets on their data flow programming language thus applying to CUDA or MESI-CUDA
is not easy.

An extension of OpenACC to support multiple GPUs is proposed by Komoda et al. [4]. Because
OpenACC generates low-level parallelizing code from a sequential user program, their compiler can
utilize multiple GPUs without controlling them in the user code. However, low-level directives
specifying local data access and reduction operations are needed.

7 Conclusion and Future Works

Although GPUs are widely used as high performance computing platforms, the computational power
and the physical memory size of a single device are often insufficient for large-scale problems. In
this paper, we proposed a dynamic scheduling scheme for a CUDA variation MESI-CUDA to solve
the issue. Our scheme introduces implicit jobs and tasks. The compiler translates each kernel
invocation in the user code into a job submission. The runtime scheduler partitions the job into
tasks considering the device memory size and dynamically schedules them to the available devices.
Thus large-scale problems can be handled without any additional user code.
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The evaluation result shows that the overhead of the proposed scheme is negligible and can
improve performance utilizing multiple GPUs. It also shows that our optimization techniques can
suppress redundant data transfers caused by the scheme. However, further optimization techniques
will be needed for more complicated cases.

Another future work is to support large-scale execution environments which consist of multiple
hosts. Currently we are developing proxy processes for remote hosts which control devices on the
host and make them available from our scheduler. To support user’s host-level parallel programming
using OpenMP or MPI, we also need to modify our static analysis and the scheduler implementation
to be thread-safe.
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