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Abstract

Consider the following operation on an arbitrary positive number: if the number is even,
divide it by two, and if the number is odd, triple it and add one. The Collatz conjecture asserts
that, starting from any positive number m, repeated iteration of the operations eventually pro-
duces the value 1. The main contribution of this paper is to present an efficient implementation
of a coprocessor that performs the exhaustive search to verify the Collatz conjecture using a
Xilinx Virtex-6 FPGA with DSP blocks, each of which contains one multiplier and one adder.
The experimental results show that, our coprocessor can verify 4.99 × 108 64-bit numbers per
second. Also, we have implemented a multi-coprocessors system that has 380 coprocessors on the
FPGA. The experimental results show that our multi-coprocessor system can verify 1.64× 1011

64-bit numbers per second.

Keywords: Hardware Algorithm, Collatz conjecture, FPGA Implementation, DSP blocks, Block
RAMs

1 Introduction

An FPGA (Field Programmable Gate Array) is a programmable VLSI in which a hardware de-
signed by users can be embedded instantly. Typical FPGAs consist of an array of programmable
logic blocks (or slices), memory blocks, and programmable interconnect between them. The logic
block contains four- or six-input logic functions implemented by a look up table and/or several reg-
isters. Using four- or six-input logic functions, registers, and their interconnects, any combinational
circuits and sequential logic can be implemented. Using design tools provided by FPGA vendors or
third party companies, a hardware logic designed by users using hardware description languages can
be embedded in FPGAs. Recent FPGAs except some low-end FPGAs have a DSP block with a mul-
tiplier and an adder, which can perform multiply-accumulate operation in high clock frequency [13].
It has been shown that a lot of computation can be accelerated using a circuit implemented in
FPGAs [2, 3, 10, 11, 12].

The Collatz conjecture is a well-known unsolved conjecture in mathematics [4, 9, 15]. Consider
the following operation on an arbitrary positive number:

even operation if the number is even, divide it by two, and

odd operation if the number is odd, triple it and add one.
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The Collatz conjecture asserts that, starting from any positive number, repeated iteration of the
operations eventually produces the value 1. For example, starting from 3, we have the following
sequence to produce 1.

3→ 10→ 5→ 16→ 8→ 4→ 2→ 1

The exhaustive verification of the Collatz conjecture is to perform the repeated operations for num-
bers from 1 to the infinite as follows:

for m← 1 to ∞
begin

n← m
while n > 1

if n is even then n← n
2

else n← 3n + 1
end

Clearly, if the Collatz conjecture is not true, then the while-loop in the program above never termi-
nates for a counter example m. Working projects for the Collatz conjecture are currently checking
60-bit numbers [14] and 63-bit numbers [4].

There are several researches for accelerating the exhaustive verification of the Collatz conjecture.
It is known [8] that series of even and odd operations for n can be done in one step by computing
n ← B[nL] · nH + C[nL] for appropriate tables B and C, where the concatenation of nH and nL

corresponds to n. In [1, 5], FPGA implementations have been presented to repeat the operations of
Collatz conjecture. These implementations perform the even and odd operations for some fixed size
of bits of interim numbers. However, in [1], the implementation ignores the overflow. Hence, if there
exists a counter example number m for the Collatz conjecture such that, infinitely large numbers are
generated by the operations from m, their implementation may fail to detect it. On the other hand,
in [5], the implementation can verify the conjecture for up to 23-bit numbers. This is not sufficient
because working projects for the Collatz conjecture are currently checking 60-bit numbers [14] and
63-bit numbers [4].

In our previous paper [8], we have shown a software-hardware cooperative approach to verify
the Collatz conjectures for 64-bit numbers m. Our approach supports almost infinitely large interim
numbers n. The idea is to perform the while-loop for interim values with up to 78 bits using a
coprocessor embedded in an FPGA. If an interim value n has more than 78 bits, the original value
m is reported to the host PC. The host PC performs the verification for such m using unlimited
number of bits by software. This software-hardware cooperative approach makes sense, because

• the hardware implementation on the FPGA is fast and low power consumption, but the number
of bits for the operation is fixed,

• the software implementation on the PC is relatively slow and high power consumption, but
the number of bits for the operation is unlimited.

In this paper, we improve the coprocessor architecture of our previous paper [8]. We use an
embedded DSP block to further accelerate the coprocessor, while four (unsigned) 17-bit multipliers
are used in our previous implementation. Let us explain more details of coprocessor architecture of
our previous paper [8]. Let n be an interim number, and nL and nH denote the least significant 10
bits of n and the remaining bits. The coprocessor performs computation n← B[nL] ·nH +C[nL] for
the exhaustive verification of the Collatz conjecture. We have used embedded (unsigned) 17 × 17-
bit multiplier in Xilinx Virtex-II Family FPGA XC2V3000. As illustrated in Figure 1, we have
used a parallel implementation that includes four multipliers to compute 68× 17-bit multiplication
B[nL] ·nH . Based on this idea, we have implemented 24 coprocessors in XC2V3000 which repeatedly
perform operation n ← B[nL] · nH + C[nL] in each of 24 coprocessors in parallel. If the resulting
value is overflow, that is, if nH has more than 68 bits, the value of n is reported in the host PC.
Each coprocessor can verify 2.47× 108 64-bit numbers m per second. The remaining verification is
performed for m with overflow interim value n by unbounded bit operations by software on the host
PC.
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Figure 1: The parallel implementation of 68× 16-bit multiplication

The main contribution of this paper is to further accelerate computation B[nL] ·nH +C[nL]→ n
using a DSP block of the FPGA for each coprocessor. More specifically, computation B[nL] · nH

is performed using a DSP48E1 block in Xilinx Virtex-6 Family FPGA. Figure 2 illustrates our
implementation to compute nH ·B[nL] using a DSP48E1 block. We have six 17-bit registers to store
up to 102-bit values of nH . The multiplication is computed in a pipeline fashion, and 17k × 17-bit
(k ≤ 6) multiplication can be performed in k clock cycles.

Our new implementation, the sequential pipeline implementation in Figure 2 has advantages
over our previous implementation, the parallel implementation in Figure 1. Let us compare the
sequential pipeline implementation and the parallel implementation for general case. The sequential
pipeline implementation can perform 17k × 17-bit multiplication in k clock cycles using a single
multiplier for any k ≥ 1. On the other hand, the parallel implementation performs 17k × 17-bit
multiplication in 1 clock cycle using k multipliers for a fixed k ≥ 1. Suppose we have an FPGA
with w multipliers and need to multiply of W pairs of 17c-bit and 17-bit numbers. Using the
sequential implementation the pair can be multiplied in c clock cycles. Thus, using w multipliers,
w pairs of 17c-bit and 17-bit numbers can be multiplied in c clock cycles. Hence, W multiplications
can be performed in dW

w e · c ≈
Wc
w clock cycles. The parallel implementation cannot perform the

multiplication whenever c > k. If c ≤ k, then a pair can be multiplied in 1 clock cycles using
w multipliers. Thus, the w multipliers can multiply W pairs in d W

dw
k ee ≈

Wk
w clock cycles. Also,

note that if c < k then k − c multipliers are not used for the multiplication. Hence, the sequential
pipeline implementation is more flexible and scalable in the sense that it supports more bits and all
multipliers are always used in every clock cycle. Also, since we have carefully used the sequential
pipeline implementation, the clock frequency is much higher than the parallel implementation. Our
sequential pipeline implementation runs in 360.490MHz, while the parallel implementation runs in
49.520MHz. Also, the overflow is detected if an interim number has more than 78 bits in our previous
parallel implementation, while our new sequential pipeline implementation supports interim number
up to 112 bits. Thus, the probability of the overflow, which is reported to the host PC in our new
implementation, is much smaller. It follows that the PC needs to verify fewer numbers if we use the
sequential pipeline implementation.

Table 1 summarizes our new implementation and previous implementation. Our parallel im-
plementation [8] uses 4 embedded multipliers and runs in 49.520MHz. Also it can perform the
verification for 2.47 × 108 numbers per second using one coprocessor. On the other hand, our new
sequential pipeline implementation runs in 360.490MHz and it can verify 4.99 × 108 numbers per
second using only one DSP48E1 block, which contains one multiplier. Although our new imple-
mentation can work at approximately 7.2 times higher frequency than our previous implementation,
the new implementation is approximately 2.0 times faster than the previous one. This is because
the new implementation needs several clock cycles to compute nH · B[nL] + C[nL]. However, the
previous implementation can compute it in one clock cycle. Since we used the different implemen-
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Figure 2: The sequential pipeline implementation

Table 1: Performance of coprocessors of the parallel implementation and the sequential pipeline
implementation

Parallel implementation Sequential Pipeline
[8] implementation (this paper)

Used Embedded blocks 4 multipliers 1 DSP48E1 block
Clock Frequency 49.520MHz 360.490MHz
Performance 2.47× 108 numbers/s 4.99× 108 numbers/s
Supported bits 78 bits 112 bits
Overflow probability 2.88× 10−5 1.33× 10−15

52



International Journal of Networking and Computing

tation between the new implementation and the previous implementation, used technologies, types
of hardware blocks, supported bit-lengths, and architectures are distinct. Therefore, the frequencies
of them cannot be directly compared. However, according to the verified numbers per second that
signifies the performance, we achieved a speedup factor of 2 over the previous implementation.

Also, we implemented a multi-coprocessors system that has 380 coprocessors on a Virtex-6 family
FPGA XC6VLX240T-1FF1156. Since the size of the circuit is quite large, the circuit delay is
increased. Then, all coprocessors run in 311.218MHz and each coprocessor can verify 4.31 × 108

64-bit numbers per second. Since each coprocessor can work independently, our implementation can
verify 1.64× 1011 64-bit numbers per second.

In our proposed method, we implemented a coprocessor with DSP blocks. Namely, we utilize
programmable logic blocks as flexible components and DSP blocks as high performance elements.
From the point of view of parallelization, we use a combination of flexibility of the fine-grained struc-
ture and high performance of the coarse-grained elements. Also, we implement a multi-coprocessors
system that has 380 coprocessors. In other words, we use the coprocessors as more coarse-gained
elements.

This paper is organized as follows: Section 2 presents a hardware algorithm for accelerating the
verification of the Collatz conjecture. Section 3 shows how the block RAM and the DSP block is
used to implement the hardware algorithm. In Section 4, we show an evaluation of overflow in the
verification. In Section 5, we evaluate the performance of our sequential pipeline implementation.
Section 6 presents a multi-coprocessors system and its performance. Finally, Section 7 is a brief
conclusion.

2 Accelerating the verification of the Collatz conjecture

The main purpose of this section is to introduce a hardware algorithm for accelerating the verification
of the Collatz conjecture. The basic ideas of acceleration are shown in [9, 15].

The first technique is to terminate the operations before the iteration produces 1. Suppose that
we have already verified that the Collatz conjecture is true for numbers less than n, and we are now
in position to verify it for number n. Clearly, if we repeatedly execute the operations for n until the
value is 1, then we can confirm that the conjecture is true for n. Instead, if the value becomes n′

for some n′ less than n, then we can guarantee that the conjecture is true for n because it has been
proved to be true for n′. Thus, it is not necessary to repeat this operation until the value is 1, and
we can terminate the iteration when, for the first time, the value is less than n.

The second technique is to perform several operations in one step. Consider that we want to
perform the operations for n and let nL and nH be the least significant two bits and the remaining
bits of n. In other words, n = 4nH + nL holds. Clearly, the value of nL is either 00, 01, 10, or 11.
We can perform the several operations for n based on nL as follows:

nL = 00: Since two even operations are applied, the resulting number is nH .

nL = 01: First, odd operation is applied and the resulting number is (4nH + 1) · 3 + 1 = 12nH + 4.
After that, two even operations are applied, and we have 3nH + 1.

nL = 10: First, even operation is performed and we have 2nH +1. Second, odd operation is applied
and we have (2nH + 1) · 3 + 1 = 6nH + 4. Finally, by even operation, the value is 3nH + 2.

nL = 11: First, odd operation is applied and we have (4nH + 3) · 3 + 1 = 12nH + 10. Second,
by even operation, the value is 6nH + 5. Again, odd operation is performed and we have
(6nH + 5) · 3 + 1 = 18nH + 16. Finally, by even operation, we have 9nH + 8.

For example, if nL = 11 then we can obtain 9nH + 8 by applying 4 operations, odd, even, odd, and
even operations in turn. Let B and C be tables as follows:
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B C
00 1 0
01 3 1
10 3 2
11 9 8

Using these tables, we can perform the following table operation, which emulates several odd and
even operations:

table operation For least significant two bits nL and the remaining most significant bits nH of
the value, the new value is B[nL] · nH + C[nL].

Let us extend the table operation for least significant two bits to d bits. For an integer n ≥ 2d,
let nL and nH be the least significant d bits, that is, n = 2dnH + nL. We call d is the base bits.
Suppose that, the even or odd operations are repeatedly performed on n = 2dnH + nL. We use two
integers b and c such that n = b · nH + c to denote the current value of n. Initially, b = 2d and
c = nL. We repeatedly perform the following rules for b and c.

even rule If both b and c are even, then divide them by two.

odd rule If c is odd, then triple b, and triple c and add one.

These two rules are applied until no more rules can be applied, that is, until b is odd and c is even.
It should be clear that, even and odd rules correspond to even and odd operations of the Collatz
conjecture. If i even rules and j odd rules applied, then the value of b is 2d−i3j . Thus, exactly d
even rules are applied until the termination. After the termination, we can determine the value of
elements in tables B and C such that B[nL] = b and C[nL] = c. Using tables B and C, we can
perform the table operation for d bits nL, which involves d even operations and zero or more odd
operations. In this way, we can accelerate the operation of the Collatz conjecture. In our previous
paper [1], we have implemented for various numbers of bits of nL. Our implementation results show
that the performance is well balanced when the number of bits of nL is 10.

The third technique to accelerate the verification of the Collatz conjecture is to skip numbers n
such that we can guarantee that the resulting number is less than n after the table operation. For
example, suppose we are using two bit table and nH > 0. If nL = 00 then the resulting value is
nH , which is less than n. Thus, we can skip the table operation for n if nL = 00. If nL = 01 then
the resulting value is 3nH + 1, which is always less than n = 4nH + 1, and we can skip the table
operation. Similarly, if nL = 10 then we can skip the table operation. On the other hand nL = 11
then the resulting value is 9nH +8, which is always larger than n. Therefore, the Collatz conjecture
is guaranteed to be true whenever nL 6= 11, because it has been verified true for numbers less than
n. Consequently, we need to execute the table operation for number n such that nL = 11.

We can extend this idea for general case. For least significant d bits nL, we say that nL is not
mandatory if the value of b is less than 2d at some moment while even and odd rules are repeatedly
applied. We can skip the verification for non mandatory nL. The reason is as follows: Consider that
for number n, we are applying even and odd rules. Initially, b = 2d and c ≤ 2d−1 hold. Thus, while
even and odd rules are applied, b > c always hold. Suppose that b ≤ 2d − 1 holds at some moment
while the rules are applied. Then, the current value of n is

bnH + c < bnH + b ≤ (2d − 1)nH + b = 2dnH < n.

It follows that, the value is less than n when the corresponding even and odd operations are applied.
Therefore, we can omit the verification for numbers that have no mandatory least significant bits.

For least significant d-bit number, we use table S to store the mandatory least significant bits.
Let sd be the number of such mandatory least significant bits. Using these tables, we can write a
verification algorithm as follows:

for mH ← 1 to +∞ do
for i← 0 to sd − 1 do
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Table 2: Tables B, C, and S for least significant 4 bits.
B C S

0000 1 0 0111
0001 9 1 1011
0010 9 2 1111
0011 9 2 -
0100 3 1 -
0101 3 1 -
0110 9 4 -
0111 27 13 -
1000 3 2 -
1001 27 17 -
1010 3 2 -
1011 27 20 -
1100 9 8 -
1101 9 8 -
1110 27 26 -
1111 81 80 -

begin
mL ← S[i];
n← m← 2dmH + mL;
while(n ≥ m) do

begin
Let nL be the least significant d bits and

nH be the remaining bits.
n← B[nL] · nH + C[nL];

end
end

For the benefit of readers, we show B, C, and S for 4 base bits in Table 2. From s4 = 3, we have
3 mandatory least significant bits out of 16.

For the reader’s benefit, Table 3 shows the necessary word size and necessary total bits for each
of tables B and C for each base bit. It also shows the expected number of odd/even operations
included in one step operation n← B[nL] ·nH +C[nL]. Table 4 shows the size of table S. It further
shows the ratio of the mandatory numbers over all numbers. Later, we will use two 36k-bit block
RAM for tables B and C, and table S, we set base bit 10 for tables B and C, and base bit 15
for table S. Thus, in our implementation, one operation n ← B[nL] · nH + C[nL] corresponds to
expected 15 odd/even operations. Also, we skip approximately 96% of non-mandatory numbers.

3 An implementation of the computation B[nL] · nH + C[nL]
using a block RAM and DSP block

This section shows how the block RAM and the DSP block is used to implement the computation
B[nL] · nH + C[nL]. For the reader’s benefits, we first review the function of embedded block RAM
and embedded DSP block.

Most FPGAs have embedded dual-port block RAMs as memory blocks. Figure 3 illustrates a
dual-port block RAM. It has two ports A and B for which read/write operations to different address
can be done in the same time. For example, Xilinx Virtex-6 family FPGAs have 36k-bit block
RAMs, each of which can be configured as 32k× 1, 16k× 2, 8k× 4, 4k× 9, 2k× 18, 1k× 36 memory.
See [7] for the details of the Xilinx Virtex-6 block RAM.
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Table 3: The size of tables B and C.

base bit words word size total bits operation
4 16 7 112 6.0
5 32 8 256 7.5
6 64 10 640 9.0
7 128 12 1536 10.5
8 256 13 3328 12.0
9 512 15 7680 13.5

†10 1k 16 16k 15.0
11 2k 18 36k 16.5
12 4k 20 80k 18.0
13 8k 21 168k 19.5
14 16k 23 368k 21.0
15 32k 24 768k 22.5
16 64k 26 1664k 24.0

† The configuration used in our implementation.

Table 4: The size of tables S. The configuration used in our implementation is underlined.

base bit words word size total bits ratio
4 3 4 12 0.1875
5 4 5 20 0.1250
6 8 6 48 0.1250
7 13 7 91 0.1016
8 19 8 152 0.0742
9 38 9 342 0.0742

10 64 10 640 0.0625
11 128 11 1408 0.0625
12 226 12 2712 0.0552
13 367 13 4771 0.0448
14 734 14 10276 0.0448

†15 1295 15 19425 0.0395
16 2113 16 33808 0.0322
† The configuration used in our implementation.

DIA
ADDRA
ENA

DIB
ADDRB
ENB

DOA

DOB

Figure 3: A dual-port block RAM
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Figure 4: A part of the block diagram of Xilinx DSP48E1 block

Further, several FPGAs have embedded DSP blocks that can perform multiplication and addition
in high frequency. For example, Xilinx Virtex-6 family FPGAs have DSP48E1 blocks, which can
compute multiplication, addition, logic operations, overflow detection, etc. Figure 4 shows a part of
the block diagram of Xilinx DSP48E1 block. One DSP48E1 block includes three input ports A, B,
and C, and one output port P . In the figure, PL and PH denote the least significant 17 bits of P
and the remaining bits. Using the DSP48E1 block, operations P ← A · B + C or P ← A · B + PH

may be performed in more than 500MHz while the same operations take less than 50MHz without
using the DSP48E1 block in the FPGA. See [6] for the details of Xilinx DSP48E1 block.

In our implementation, we use 36k-bit block RAMs (Figure 3.) One block RAM is used to
implement the tables B and C with base bit 10. Also, one block is used for the table S with base
bit 15. As shown in Table 3, the values of B and C with base bit 10 are at most 16 bits. Thus,
a 36k-bit block RAM is configured as a 1k × 36 memory to store the values. More specifically, for
each i (0 ≤ i ≤ 210), the values of 32-bit C[i] : B[i] is stored in address i of the block RAM. Using
the block RAM, the values of B[nL] and C[nL] can be computed. Also, since the table S with base
bit 15 needs 2k × 15 words from Table 4, we use one 36k-bit block RAM to store it.

A DSP block is used to compute the value of B[nL] · nH + C[nL]. As illustrated in Figure 4, a
DSP block can compute P ← A · B + C or P ← A · B + PH . In the Xilinx DSP48E1 block, A and
B can have up to 25 bits and 18 bits, respectively, and both C and P can have 48 bits. Also, it
supports unsigned 23× 17-bit multiplication and 48-bit addition. Output P is separated into 31-bit
PH and 17-bit PL.

We implement the computation of n← B[nL] · nH + C[nL] as follows. The values of B[nL] and
C[nL] are given to ports B and C, respectively. Let nH is partitioned into k 17-bit unsigned integers
n0, n1, . . . , nk−1 such that nH = n0 · 20·17 + n1 · 21·17 + · · ·+ nk−1 · 2(k−1)·17. Similarly, the resulting
value p is partitioned into k+1 17-bit unsigned integers p0, p1, . . . , pk. The values of n0, n1, . . . , nk−1

are given to port A in turn. Then, the resulting values of p0, p1, . . . , pk are computed, and these
values can be obtained from port PL in turn. The key idea is to compute the value of p from the
least significant digit. Register PL is used to store the carry. The details are spelled out as follows:

1 P ← B[nL] · n0 + C[nL];
for i← 0 to k − 2

2 pi ← PL, P ← B[nL] · ni+1 + PH ;
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Figure 5: The architecture of a coprocessor

3 pk−1 ← PL;pk ← PH ;

In this hardware algorithm, each of the lines 1, 2, and 3 can be computed in one clock cycle. In this
way, the values of n0, n1, . . . , nk are computed.

To achieve the high clock frequency, we must use internal registers to partition the combination
circuit in DSP block and perform the computation in pipeline fashion. For this purpose, we have
used internal registers such that the computation is performed in three stage pipeline. Actually
the number of the pipeline stages to compute B[nL] · nH + C[nL] is four. However, the pipeline
stages consist of one stage for reading B[nL] and C[nL] from the block RAM, and three stages for
computing B[nL] · nH + C[nL] with the DSP block as shown in Figure 4. Also, we have used six
17-bit registers to store p0, p1, . . ., p5 as illustrated in Figure 2.

Figure 5 illustrates the architecture of a coprocessor. One block RAM is used to store the values
of S with base bit 15. The other block RAM is used to store the values of B and C with base bit 10.
Thus, the table S has 1,295 mandatory least significant bits, a counter is used to output numbers i
from 0 to 1,294. One block RAM is used to output S[i]. The value of m consists of a 46-bit integer
M , 17-bit integer mH , and 15-bit integer mL. The value of M is given by the host PC, 17-bit
counter is used to store the current values of mH , and S[i] determines the least significant 15 bits
of m. The value of m is transferred to six 17-bit registers, which store the current value of n. The
least significant 15 bits of n, nL is given to the block RAM for tables B and C. The block RAM
outputs the values of B[nL] and C[nL], which are given to ports B and C of the DSP48E1 block.
After that, B[nL] · nH + C[nL] is computed using the DSP48E1 block. If n ≥ m then the resulting
value is stored in the register for n. Otherwise these registers are updated by next values of m.

For given 46-bit integer M by the host PC, the coprocessor performs the exhaustive verification
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for the Collatz conjecture for numbers from M · 232 to (M + 1) · 232 − 1. In other words, the
verification can be performed for up to 78-bit numbers. This is sufficient because working projects
for the Collatz conjecture are currently checking 60-bit numbers [14] and 63-bit numbers [4].

4 The probability of overflow

Let us evaluate how often we have the overflow. Suppose that the even and the odd operations
are performed for a 64-bit number n. Note that 263 ≤ n < 264 holds. Let M(n) denote the
maximum number until n produces, for the first time, a number less than n during the operations.
For example, M(3) = 16 holds. Suppose that we use b-bit architecture for the even and the odd
operations. The verification of n is overflow if M(n) ≥ 2b. Let V (b) be the set of such number n,
that is V (b) = {n | 263 ≤ n < 264 and M(n) ≥ 2b}. Then, the ratio R(b) of the overflow of 64-bit
numbers on b-bit architecture is

R(b) =
|V (b)|
263

.

Figure 6 shows the ratio R(b) of overflow for a 64-bit integer on the b-bit architecture. The ratio
R(b) for b = 66, 67, . . . , 84 generating a 64-bit number 108 times at random, and seeing if M(n) ≥ 2b

[8]. Using the results, we expect the ratio R(b) for b > 84. This figure shows that the ratio R(b)
rapidly decreases by increasing the value of b. Recall that the parameter b = 112 is used in our
coprocessors. From the figure, we can see R(112) = 1.33× 10−15, which is small enough.
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100

 70  77  84  91  98  105  112

R
(b

)

b

Experimental results
Expected ratio

Figure 6: The ratio R(b) of overflow for a 64-bit integer on the b-bit architecture

5 Experimental results

We have implemented and evaluated the performance of our sequential pipeline implementation
on Xilinx Virtex-6 family FPGA (XC6VLX240T-1FF1156), which has 37,680 slices, 768 DSP48E1
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blocks, and 416 36k-bit block RAMs. Table 5 shows the result of synthesis of our implementa-
tion. For the purpose of showing the goodness of our sequential pipeline implementation, the table
also shows the result of synthesis of our previous implementation, the parallel implementation [8].
We have implemented and evaluated the performance of our previous implementation on Xilinx
Virtex-2 family FPGA (XC2V3000-4FG676), which has 14,336 slices, 96 multipliers, and 96 18k-bit
block RAMS. Since the structure of each FPGA is different, the size of each circuit is not com-
parable. However, compared with the number of available slices in each FPGA, each size of both
implementations is small enough.

Table 5: The Results of synthesis of our implementation (single coprocessor)
Parallel implementation Sequential pipeline
[8] implementation(this paper)

Target Device XC2V3000-4FG676 XC6VLX240T-1FF1156
Used Embedded Block 4 multipliers 1 DSP48E1 block
Used Slices 282 103
Used RAMs 4 18k-bit block RAMs 2 36k-bit block RAMs
Maximum Clock Frequency 49.520MHz 360.490MHz

We have evaluated the computing time of the FPGA implementations by verifying the Collatz
conjecture for the 64-bit numbers, because working projects for the Collatz conjecture are currently
checking 60-bit numbers [14] and 63-bit numbers [4]. For this purpose, we have randomly generated
240 32-bit numbers M at random. For each generated 32-bit random number M , the FPGA imple-
mentations verified 232 numbers in the range of [M · 232, (M + 1) · 232 − 1]. Therefore, they verified
240 × 232 ≈ 1.0 × 1012 64-bit numbers in total. Table 6 shows the experimental results. Our new
pipeline implementation is approximately 2.0 times faster than the previous implementation. Also,
our previous implementation has 5,656,255 overflows in 1012 64-bit numbers, while our new imple-
mentation has detected no overflow numbers. In our experiment of verifying 1012 64-bit numbers,
no interim number has more than 100 bits. Recall that our new implementation and previous imple-
mentation support 112-bit and 78-bit interim numbers. Thus, our previous implementation detects
many overflowed interim numbers, while our new implementation has no overflow numbers. Actu-
ally, as shown in the previous section, R(112) = 1.33× 10−15. Thus, we have expected 1.33× 10−3

overflow interim numbers during the verification of 1012 64-bit numbers.

Table 6: The computing time for verifying Collatz conjecture (single coprocessor)

Parallel implementation Sequential Pipeline
[8] implementation(this paper)

Clock frequency 49.520MHz 360.490MHz
Computing time for verifying 1012 numbers 4,174.63 sec 2,066.35 sec
The number of verified numbers per second 2.47× 108 4.99× 108

The number of overflowed interim numbers 5,656,255 0

6 Multi-coprocessor system

According to the above results, we have implemented a multi-coprocessors system that has 380
coprocessors in a Virtex-6 family FPGA XC6VLX240T-1FF1156. In the system, each coprocessor
is our sequential pipeline implementation as shown in the above sections. The implementation uses
37,627 slices and 380 DSP48E1, and 380 36k-bit block RAMs. Note that as shown in Table 5, each
coprocessor uses two 36k-bit block RAMs for tables S, B, and C. Further, since the block RAM
in the Virtex-6 FPGA is dual port, that is, it has two address ports and can be read the data of
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two addresses, which can be distinct, in the same time. Hence, two coprocessors can share the two
36k-bit block RAMs for three tables. Therefore, in the multi-coprocessor system, the number of
used Block RAMs is equivalent to the number of coprocessors. The timing analysis reported that
our implementation runs in 311.218MHz. The frequency is lower than that of one coprocessor shown
in Section 5, since the circuit delay is increased. Therefore, each coprocessor can verify 4.31 × 108

numbers per second. Because each coprocessor can work independently, our multi-coprocessor system
can verify 380× (4.31× 108) = 1.64× 1011 numbers per second. Our previous approach can verify
2.89× 109 numbers per second using 24 coprocessors [8]. As mentioned in Section 4, in our previous
multi-coprocessor system, many overflowed interim numbers are detected and those numbers must be
verified by software on the host PC, while our new implementation has detected no overflow numbers.
Hence, the performances of them cannot be directly compared by used hardware resources and their
frequencies. Therefore, to compare them, the results of synthesis and total performance are shown
in Table 7.

Table 7: The Results of synthesis of our implementation (multi-coprocessor system)
Parallel implementation Sequential pipeline
[8] implementation(this paper)

Target Device XC2V3000-4FG676 XC6VLX240T-1FF1156
Coprocessors 24 380
Used Embedded Block 96 multipliers 380 DSP48E1 blocks
Used Slices 8,848 37,627
Used RAMs 36 18k-bit block RAMs 380 36k-bit block RAMs
Maximum Clock Frequency 40.120MHz 311.218MHz
Verified numbers per second 2.89× 109 1.64× 1011

7 Conclusions

We have presented an efficient implementation of a coprocessor that performs the exhaustive search
to verify the Collatz conjecture using a DSP48E1 Xilinx Virtex-6 blocks, each of which contains one
multiplier and one adder.

We have implemented our coprocessor on the Virtex-6 family FPGA XC6VLX240T-1FF1156.
The experimental results show that it can verify 4.99 × 108 64-bit numbers per second. Since the
size of the coprocessor is small enough, several dozen coprocessors can be implemented in an FPGA.
Therefore, they can work in parallel and verify the conjecture much faster.

Also, we have implemented a multi-coprocessors system that has 380 coprocessors on the FPGA.
The experimental results show that our multi-coprocessor system can verify 1.64×1011 numbers per
second.
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