
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 6, Number 2, pages 212–229, July 2016

A Performance Evaluation of Dynamic Parallelism for Fine-Grained, Irregular Workloads

Max Plauth, Frank Feinbube, Frank Schlegel and Andreas Polze

Operating Systems and Middleware Group
Hasso Plattner Institute for Software Systems Engineering

University of Potsdam
PO Box 990460, 14440 Potsdam, Germany

Received: February 3, 2016
Revised: May 4, 2016
Accepted: July 6, 2016

Communicated by Michihiro Koibuchi

Abstract

GPU compute devices have become very popular for general purpose computations. How-
ever, the SIMD-like hardware of graphics processors is currently not well suited for irregular
workloads, like searching unbalanced trees. In order to mitigate this drawback, NVIDIA intro-
duced an extension to GPU programming models called Dynamic Parallelism. This extension
enables GPU programs to spawn new units of work directly on the GPU, allowing the refinement
of subsequent work items based on intermediate results without any involvement of the main
CPU.

This work investigates methods for employing Dynamic Parallelism with the goal of improved
workload distribution for tree search algorithms on modern GPU hardware. For the evaluation
of the proposed approaches, a case study is conducted on the N-Queens problem. Extensive
benchmarks indicate that the benefits of improved resource utilization fail to outweigh high
management overhead and runtime limitations due to the very fine level of granularity of the
investigated problem. However, novel memory management concepts for passing parameters to
child grids are presented. These general concepts are applicable to other, more coarse-grained
problems that benefit from the use of Dynamic Parallelism.

Keywords: GPU computing, Dynamic Parallelism, workload distribution, irregular workloads

1 Introduction

Leveraging graphics hardware for general purpose tasks has gained a notable prevalence rate.
Nonetheless, GPU computing struggles with attaining a broader target audience outside the field
of scientific computation or image processing. One reason for this struggle is the SIMD-like nature
of graphics processors, which narrows down the choice of tasks which may benefit from GPU-based
implementations. While current GPU programming models like CUDA [16] or OpenCL [12] provide
the means for utilizing the compute resources of GPU compute devices for general purpose tasks, one
of the most limiting constraint has been that only the main CPU was able to launch kernels. Hence,
irregular workloads are a representative class of tasks which fails to leverage the full performance
of modern GPUs. Due to the heavily varying execution times of different threads, static workload
distribution cannot achieve homogeneous utilization. Dynamic redistribution of work has not been
feasible thus far, since only the main CPU has been able to redistribute work.

212

International Journal of Networking and Computing

In the foreseeable future, lifting of certain limitations of the programming models might have
the biggest potential for enabling other use case domains to tap the resources of GPU hardware.
Aiming towards this path, NVIDIA recently introduced an extension called Dynamic Parallelism.
Dynamic Parallelism empowers GPU kernels to launch nested kernels by themselves, which enables
developers to influence control flows based on intermediate results without any involvement of the
main CPU.

In the presentation that introduced Dynamic Parallelism to the public [11], NVIDIA presented
several exemplary use cases, including fluid dynamics simulations, Mandelbrot sets and n-body
simulations. For these problems, even the close-meshed regions of the adaptive grid contain compute-
intensive portions of work. Such characteristics are ideally suited for demonstrating the strengths
of Dynamic Parallelism, since the overhead for spawning new thread grids is easily outweighed by
improved device utilization.

To analyze the performance characteristics of Dynamic Parallelism for fine-grained, irregular
workloads, a case study of the N-Queens problem is conducted in the course of this paper. The goal
of N-Queens is to find all valid configurations for placing N chess queens on a N×N chess board, so
that no two queens threaten each other. Figure 1 illustrates all valid configurations for the simple
case of N = 6. Popular implementation strategies of N-Queens use a search-tree representation and
perform a depth-first search as illustrated in Figure 2. Inherent to this structure is the problem
of irregular workload distribution for parallel implementations, as many branches of the search-tree
reach invalid configurations rather quickly. Furthermore, the smallest unit of work per thread can
be broken down to applying bitwise operations (see Section 2.3), which results in very light-weight
threads. These characteristics make N-Queens a prime candidate for examining the behavior of
Dynamic Parallelism for less-than-ideal workloads. We provide the following contributions:

1. We analyze the performance implications of Dynamic Parallelism for fine-grained, irregular
workloads.

2. We present generally applicable memory management concepts for efficient intercommunication
with child grids.

3. We assess the behavior of the runtime environment for corner cases where limits are exceeded
regarding thread count or recursion depth.

Figure 1: All four valid solutions to N-Queens for N = 6 are illustrated.

213

A Performance Evaluation of Dynamic Parallelism for Fine-Grained, Irregular Workloads

...

... ...

Figure 2: The N-Queens problem can be represented in the form of a search-tree, where each
configuration of placing a queen spans a new set of subtrees.

2 Background

In this section, we review related work dealing with load balancing on GPUs, memory management
on GPUs, Dynamic Parallelism and approaches to the N-Queens problem.

2.1 Load balancing on GPUs

Aiming towards optimal utilization of compute resources, several GPU-based load-balancing strate-
gies exist. Cederman and Tsiga [4] grouped existing approaches into four classes. The general
properties of each class are outlined and related approaches are presented hereafter.

2.1.1 Static task lists

Tasks are assigned to threads statically before the execution is launched. This approach fails if the
amount of work per task is not known prior to the execution or when new tasks have to be created at
runtime. A workaround exists that uses a read-only task list and an additional list with an atomic
add function for incoming tasks [4]. Using this method, dynamic creation of tasks at runtime is
possible. However it does not provide proper means of load balancing, since idle cores still have to
wait for active threads to finish.

2.1.2 Blocking task-queues

One or multiple dynamically sized queues are used. Exclusive manipulation of queues is enforced
using a locking mechanism. While this approach allows independent removal and creation of tasks
for all threads, the locking mechanism represents a major bottleneck. The impact is especially
notable for large numbers of threads [4] and thus severely affects GPU compute devices, which
contain thousands of cores. A workaround has been suggested by Tzeng et al. [24], which is based
on a dictionary that keeps account of dependencies between tasks. As soon as a task has finished,
its dependent tasks are added to the task-queue. However, Tzeng et al. conclude that even with
the workaround in place, the overhead caused by the locking mechanism cannot be outweighed for
fine-grained tasks [24].

214

International Journal of Networking and Computing

2.1.3 Non-blocking task-queues

Task-queues with lock-free manipulation techniques are usually implemented using atomic opera-
tions. As a consequence, fetching or creating new tasks causes much less overhead compared to
blocking task-queues. However, the approach does not scale very well for large numbers of threads.
Using mapped memory, Chen and Villa [6] have introduced a concept which uses non-blocking task-
queues to implement a master-worker pattern, where the main CPU is able to generate tasks after
a kernel has been launched. This approach is very well suited for scenarios where multiple GPUs
have to be supplied with tasks.

2.1.4 Work stealing

For work stealing, each thread has a dedicated task-queue. New tasks are usually added by the
associated thread, whereas arbitrary threads can extract work items. If its queue runs empty,
the thread can fetch work from any other queue. Comparing GPU-based implementations of the
previously mentioned approaches, Cederman and Tsiga found that work stealing performs best with
regards to both scalability and execution time [4]. Chatterjee et al. [5] introduced an extension for
the GPU computing use case, which adds a global task-queue that is used by the main CPU to
enqueue new tasks. In a similar fashion, many hybrid approaches exist that combine properties of
work stealing with other concepts. For example, Lauterback et al. [14] presented an approach where
the contents of local task-queues are re-distributed on a regular basis to achieve balanced filling
levels among queues.

2.1.5 Dynamic Parallelism

NVIDIAs implementation of Dynamic Parallelism is based on the Grid Management Unit, which
was introduced with the GK110 Kepler GPU architecture. As illustrated in Figure 3, Dynamic
Parallelism is a feature that enables GPU kernels to launch nested kernels by themselves, which
enables developers to influence control flows based on intermediate results without any involvement
of the main CPU. Strategies for leveraging this capability for implementations of the N-Queens
problem are the extensively investigated in Section 3. Whereas the load balancing strategies dis-
cussed in the previous sections required developers to provide their own facilities to supply threads
with tasks, Dynamic Parallelism allows the dynamic creation of threads since CUDA 5.0 [16] and
OpenCL 2.0 [12]. However, employing Dynamic Parallelism is also accompanied by certain limita-
tions which are specified in the CUDA C Programming Guide [16]. Most importantly, the maximum
depth for nested kernel calls is limited to 24. Child thread grids launched by a kernel are not able
to access registers or shared memory of their parent grids. Small data volumes can be passed di-
rectly to child grids using call parameters, whereas larger data volumes can only be handed over via
global device memory. With the maximum size of the parameter buffer being limited to 4 kilobytes
however, the data volume that can be passed through call parameters is quite limited.

CPU GPU
without DP

CPU GPU
with DP

Figure 3: Without Dynamic Parallelism (DP), each step that influences the further control flow
involves the CPU (left). Using DP (right), GPU kernels may launch child kernels by themselves.

215

A Performance Evaluation of Dynamic Parallelism for Fine-Grained, Irregular Workloads

2.2 Memory management on GPUs

Since CUDA 3.2, kernels have been able to allocate memory dynamically at runtime [16]. The de-
fault CUDA allocator is comparatively slow, which is why a range of custom allocators have emerged.
Xmalloc [10] achieves factor 48 speed-up compared to the default CUDA allocator. This is achieved
by delegating the allocation task to a single thread within a warp. Furthermore, pre-allocated buffers
are used to accelerate the allocation process. ScatterAlloc [22] is an extension of Xmalloc, which
achieves a speed-up of factor 10 compared to Xmalloc by avoiding simultaneous memory access
using a hashing function. This approach has been augmented by FDGMalloc [25], which elimi-
nates simultaneous access to memory entirely by using warp-local lists to serve allocation requests
from pre-allocated buffers. With these improvements, FDGMalloc manages to outperform Scatter-
Alloc. Dynamic memory allocation is one of the major bottlenecks of the approaches documented
in Section 3, which is why FDGMalloc is employed.

2.3 N-Queens

N-Queens is based on a puzzle, which was proposed by Max Bezzel in 1848 [3]. The goal of the
puzzle is to find all valid configurations for placing 8 chess queens on a regular 8×8 chess board, so
that no two queens threaten each other. The problem was later generalized to placing N queens on
a N×N board for N > 3. For the simple case of N = 6, Figure 1 illustrates all valid configurations.
The problem is NP-hard and can be mapped to the clique problem [7, 9]. Furthermore, efficient
approaches to the N-Queens problem come with a high degree of practicality, since the problem can
be easily mapped to other problems [2].

Regarding implementation strategies for the N-Queens problem, three general algorithm classes
have been identified by Erbas et al. [7]: brute-force trial and error algorithms O(NN), permuta-
tion generation algorithms O(N !) and backtracking algorithms O(N !). Since brute-force approaches
are not feasible, most implementations resort to the remaining approaches. However, even though
permutation-based approaches and backtracking belong to the same complexity class O(N !), back-
tracking approaches have the advantage that many invalid branches can be ruled out very early. This
is reflected by the fact that many of the best-performing implementations are based on backtracking
techniques.

2.3.1 Serial implementations

The fastest serial implementation to date has been documented by Somers [21]. His solution is
based on the recursive backtracking algorithm of Richards [18], who suggested the utilization of
three bit masks to encode the position of queens on the board as illustrated in Figure 4. Using the
bit mask representation, simple bitwise operations suffice to validate possible placement candidates.
Somers implementation refined this approach by replacing expensive recursion with a self-managed
stack of bit masks to implement a depth first search. Due to its superior performance, Somers
implementation [21] is used as reference for single-threaded performance in the course of this paper.

2.3.2 Parallel implementations

In the field of parallel implementations of the N-Queens problem on general purpose processors,
Kise et al. [13] were the first to solve the problem for N = 24 using an implementation based on
the Message Passing Interface (MPI) standard. The implementation employed the master worker
pattern for improved workload balancing and took 44 days on a 34-node PC cluster to retrieve all
valid solutions. Later on, Rolfe [19] re-confirmed that MPI-based implementations are suited for
efficient implementations of the N-Queens problem. A different approach was applied by Caromel
et al. [1], who used a grid of 260 computers consisting of regular desktop computers as well as high
end server hardware to retrieve all solutions for N = 25.

The current world record is held by Preußer et al. [17] from the Dresden University of Technology.
Using a cluster of 26 field-programmable gate arrays (FPGAs) and 270 days of processing time,

216

International Journal of Networking and Computing

0 0 1 0 0 0 1 0

0011101001001100011000 0 0

Q

Q

poss

rdld

Q

Q

cols

Current row

Figure 4: The chess-board can be efficiently represented using three bit masks. Bitwise operations
can be applied to validate the current configuration. Image source: [18]

22, 317, 699, 616, 364, 044 valid solutions were determined for N = 26. While the world record is
held by the aforementioned FPGA-based approach, graphics hardware based implementations have
also been well researched [8], [5, 23]. However, no publication is known to the authors that tries to
solve the unbalanced workload distribution of N-Queens using Dynamic Parallelism. The fastest
implementation for GPU compute devices known to the authors has been published by Feinbube et
al. [8], which is based on Somers [21] serial implementation. In this approach, the main CPU creates
initial board configurations for each thread and then hands over the tasks to the GPU. The partial
results retrieved for each subtree are finally consolidated by the main CPU. The implementation [8]
incorporates several GPU-specific optimizations and is also used as a reference for the implementation
strategies evaluated in the course of this paper.

3 Approaches to Dynamic Parallelism

Different approaches of leveraging Dynamic Parallelism for GPU-based implementations of the N-
Queens problem are presented in this section. Method DP-1, which is elaborated in Section 3.1,
employs an excessively fine-grained approach and investigates the overhead caused by dynamic
thread grid creation. In contrast to this, the strategy DP-2 documented in Section 3.2 explores a
more compacted concept where each GPU-thread is supplied with larger portions of work. Built
upon the latter approach is the method DP-3 (see Section 3.3), which aims at improving work-
load distribution and resource utilization. Finally, the concept DP-SWAP explained in Section 3.4
presents a strategy that is able to reduce the number of dynamic memory allocations in the context
of Dynamic Parallelism. In Section 4, all implementations are evaluated and compared to the ap-
proaches of Somers [21] and Feinbube et al. [8]. Like these approaches, all strategies presented in
the course of this work exploit the symmetry of N-Queens (see Figure 1).

3.1 DP-1: Thread swarming kernel

This fine-grained approach tries to place queens on the board iteratively row by row, using a very high
thread count. For that purpose, the initial grid is supplied with a valid, pre-calculated configuration.
Each thread in the grid attempts to place a queen in the next row onto a field specified by the threads
index.

For the first attempt of this swarming approach, each thread that retrieves a valid configuration
launches a new grid. As depicted in Figure 5, the newly created grids repeated the same actions
until a thread manages to place a queen in the last row of the board. In this case, the thread
atomically increments a global counter to document the valid configuration and terminates. Unlike

217

A Performance Evaluation of Dynamic Parallelism for Fine-Grained, Irregular Workloads

the backtracking approaches discussed in Section 2.3, this method does not resemble a depth first
search, but rather a parallel breadth first search. The major drawback of this first attempt is that N
defines the upper limit of threads in a grid. For realistic sizes for N that can be handled by modern
GPUs, this strategy results in a thread count per grid well below the warp size of 32 threads. Since
GPU multiprocessors execute entire warps, the difference between the warp size and the chosen N
accounts for the number of unused cores and per warp.

...

... ...

grid

thread

Figure 5: The first revision of DP-1 launches one grid per row with one thread per field.

In order to clear out this drawback, a second attempt was made at implementing a thread-count
intensive approach. As demonstrated in Figure 6, the main difference compared to the first approach
is that one thread is responsible for evaluating multiple rows. Because one grid has to process all
permutations, the grid contains Nz threads, where z is a configuration parameter that specifies the
number of rows to be processed per grid. For further clarification, Listing 1 provides the CUDA
source code which implements the stated strategy.

...

Figure 6: The improved version of DP-1 processes multiple rows per grid and launches Nz threads,
where z is the search depth.

1 template <int N>

2 __global__ void nQueensKernelSwarming(boardConfig_t boardConfig ,

3 size_t rows , unsigned int numThreads) {

4 unsigned int index = blockIdx.x * blockDim.x + threadIdx.x;

5 if (index >= numThreads) return; // does this thread participate ?

6

7 unsigned int row , indexInRow;

8 for (row = 0; row < rows; ++row) {

9 indexInRow = index % N;

10 // check if queen can be placed , update boardConfig accordingly

11 if (! placeAndValidateQueenAtIndex(indexInRow , boardConfig)) {

12 return; // return when no queen can be placed

13 }

14

218

International Journal of Networking and Computing

15 index /= N; // encode next row in remainder of index

16

17 // store valid solution

18 if (boardConfig.currentRow == N && index == 0) {

19 atomicAdd (& d_nQueensResult , 1);

20 return;

21 }

22 }

23

24 // create new stream and issue computation of next row in a new grid

25 cudaStream_t stream;

26 cudaStreamCreateWithFlags (&stream , cudaStreamNonBlocking);

27 unsigned int numBlocks = (numThreads + blockDim.x - 1) / blockDim.x;

28 nQueensKernelSwarming <N><<<numBlocks , blockDim.x, 0, stream >>>

29 (boardConfig , rows , numThreads);

30 }

Listing 1: The DP1 -Kernel uses many light-weight threads to solve N-Queens recursively

3.2 DP-2: Condensed kernel with static search depth

Counteracting the overhead of the large number of light-weight threads employed in DP-1, this
approach refers to the approach of Feinbube et al. [8] and aims at employing fewer threads and
larger work packages. For that purpose, each thread applies backtracking to search a subtree up
to a specified search depth. All valid configurations that are obtained by a thread at its maximum
search depth are recorded. After the thread has checked all branches within its search depth, a new
grid is launched upon the set of valid configurations as demonstrated in Figure 7. If a thread manages
to place a queen in the last row of the board, the thread terminates after a global counter has been
atomically incremented to document the valid configuration. The search depth limit was introduced
to effect a periodic adjustment of the thread count in response to the encountered problem size.

initial configuration

invalid
configurations

child
configurationschild-gridm

ax
im

um
 s

ea
rc

h
de

pt
h

Figure 7: In DP-2, a thread traverses its subtree up to a maximum search depth. Valid configurations
are passed to child grids.

Shared memory is used to record the state of the preceding rows for each thread. While shared
memory provides much faster access times than global memory, its capacity is limited. The amount
of shared memory required by the condensed approach is predominantly defined by the block size
and the maximum search depth. The search depth defines the upper limit of valid configurations
and corresponding bit masks that have to be accommodated in shared memory.

Unfortunately, the data volume that has to be passed exceeds the limits of the kernel parameters.
As a result thereof, the configurations have to be passed via global memory, which needs to be

219

A Performance Evaluation of Dynamic Parallelism for Fine-Grained, Irregular Workloads

allocated dynamically. This approach employs a novel per-block memory management scheme that
enables simple handover of large parameter data to child grids and mitigates the high costs of
dynamic memory allocation. Frequent memory allocations are inhibited by allocating large memory
blocks, where the size of the allocated memory region is proportional to the number of threads in
a block. The latter property alleviates index-based access by child grids, since each thread in the
child grid can identify its initial configuration using the thread index. Furthermore, memory is only
allocated if at least one valid configuration has been found by a thread. However, this scheme does
not only work for the specific problem at hands, but it is general enough to be applied to arbitrary
problems that use Dynamic Parallelism and have to pass larger data volumes to child grids. For
further exemplification of the condensed approach and its memory management scheme, Listing 2
provides the complete CUDA source code for DP-2.

1 template <int N>

2 __global__ void nQueensKernelCondensed(boardConfig_t ** boardConfigs ,

3 size_t depth , uint numThreads , bool freeMemory , uint* freeCounter) {

4 if (blockIdx.x * blockDim.x + threadIdx.x >= numThreads) return;

5

6 extern __shared__ char sharedMemory []; // use SM to store configuration stacks

7 uint stackSize = (depth + 1) * blockDim.x;

8 boardConfig_t* confStacks = (boardConfig_t *) sharedMemory;

9 bitfield_t* bitfieldStacks = (bitfield_t *) (confStacks + stackSize);

10

11 // apportion SM to threads and put initial configuration on stack

12 boardConfig_t* boardConfigBlock = boardConfigs[blockIdx.x];

13 boardConfig_t* confStack = confStacks + (threadIdx.x * (depth + 1));

14 confStack [0] = boardConfigBlock[threadIdx.x];

15

16 // wait for all threads , then free memory , as it is no longer needed

17 __syncthreads ();

18 if (freeMemory && threadIdx.x == 0) {

19 free(boardConfigBlock);

20 if (atomicAdd(freeCounter , 1) == (gridDim.x - 1)) {

21 free(boardConfigs);

22 free(freeCounter);

23 }

24 }

25

26 // working variables

27 const bitfield_t mask = (1 << N) - 1; // indicates ’unused ’ bits

28 // indicates placement state of fields (1 = free , 0 = queen)

29 bitfield_t bitfield = mask & ~(confStack [0]. col |

30 confStack [0]. posDiag | confStack [0]. negDiag);

31 bitfield_t* bitfieldStack = bitfieldStacks + (threadIdx.x * (depth + 1));

32 bitfieldStack [0] = bitfield;

33 bitfield_t lsb; // "least significant bit" marks the first free field

34 int stackPtr = 0; // current depth in the stack for (row of current subtree)

35

36 // parameters for potential child grid

37 boardConfig_t ** childConfigs = 0; // array of references to config blocks

38 boardConfig_t* currentConfigBlock = 0;

39 uint numChildConfigs = 0; // number of obtained child configurations

40 uint numChildBlocks = 0; // number of created memory blocks

41 uint currentBlockConfigIndex = 0; // index of current config

42

43 // traverse the subtree assigned to this grid

44 while (true) {

45 if (bitfield == 0) { // no space for a new queen

46 if (--stackPtr < 0) { // root of the partial tree has been reached

47 if (numChildConfigs > 0) { // start child grid for found configurations

48 cudaStream_t stream;

49 cudaStreamCreateWithFlags (&stream ,cudaStreamNonBlocking);

50 uint* freeCounter = (uint*) malloc(sizeof(uint));

51 *freeCounter = 0; // counter for inter -block - synchronization

52 uint sharedMemSize = (sizeof(boardConfig_t) +

220

International Journal of Networking and Computing

53 sizeof(bitfield_t)) * stackSize;

54 nQueensKernelCondensed <N><<<numChildBlocks ,

55 blockDim.x, sharedMemSize , stream >>>(childConfigs ,

56 depth , numChildConfigs , true , freeCounter);

57 }

58 return; // terminate traversal

59 }

60 bitfield = bitfieldStack[stackPtr]; // move back in tree

61 continue;

62 }

63

64 lsb = -((signed)bitfield) & bitfield; // seek for free queen positions

65 bitfield &= ~lsb; // mark new queen placement

66

67 // last row has not been reached yet

68 if (confStack[stackPtr]. currentRow < (N - 1)) { // last row not y

69 if (stackPtr == depth) { // reached end of the current subtree

70 if (! childConfigs) { // initialize block -array if necessary

71 childConfigs = (boardConfig_t **) malloc(sizeof(boardConfig_t *) *

72 ((numThreads + blockDim.x - 1) / blockDim.x));

73 }

74 if (!(numChildConfigs % blockDim.x)) { // a new memory -block is needed

75 currentConfigBlock = (boardConfig_t *) malloc(

76 sizeof(boardConfig_t) * blockDim.x);

77 childConfigs[numChildBlocks ++] = currentConfigBlock;

78 currentBlockConfigIndex = 0;

79 }

80 currentConfigBlock[currentBlockConfigIndex ++] = confStack[stackPtr --];

81 ++ numChildConfigs; // store found configurations

82 bitfield = bitfieldStack[stackPtr]; // move back in tree

83 continue;

84 }

85

86 // the end of the current subtree has not been reached yet

87 int nextStackPtr = stackPtr + 1;

88 // mark new queen placement in bitfields

89 confStack[nextStackPtr].col = confStack[stackPtr].col | lsb;

90 confStack[nextStackPtr]. posDiag = (confStack[stackPtr]. posDiag | lsb) << 1;

91 confStack[nextStackPtr]. negDiag = (confStack[stackPtr]. negDiag | lsb) >> 1;

92 confStack[nextStackPtr]. currentRow = confStack[stackPtr]. currentRow + 1;

93 bitfieldStack[stackPtr] = bitfield; // store current bitfeld

94 // update bitfeld for next row

95 bitfield = mask & ~(confStack[nextStackPtr].col |

96 confStack[nextStackPtr]. posDiag | confStack[nextStackPtr]. negDiag);

97 stackPtr = nextStackPtr;

98 continue;

99 } else {

100 // the last row has been reached and a valid configuration has been found

101 atomicAdd (& d_nQueensResult , 1);

102 bitfield = bitfieldStack[--stackPtr]; // move back one step

103 continue;

104 }

105 }

106 }

Listing 2: Complete source code of the condensed DP2 -Kernel.

3.3 DP-3: Condensed kernel with dynamic search depth

One major drawback of the approach DP-2 is that with a progression in depth, the number of
branches to be analyzed by child grids decreases. As a consequence thereof, such child grids are
assigned with much less work compared to their parent grids. As a countervailing measure, this
method employs a dynamic search depth, which increases for every generation of child grids. That
way, the decreasing width of subtrees is counterbalanced by a growing depth. Listing 3 illustrates
the alterations that augment DP-2 with dynamic search depth.

221

A Performance Evaluation of Dynamic Parallelism for Fine-Grained, Irregular Workloads

While multiple growth models exist ranging from linear growth over polynomial growth up to
exponential growth, experimental results revealed that the simple model of doubling the search
depth with each child grid works sufficiently well. The limiting factor for search depth is given by
the amount of shared memory which is available. The upper bound is defined as follows:

depthmax =
shared memory sizemax

sizestate ×#threadsblock
− 1

For the evaluated target hardware GK110, which supports compute capability 3.5, shared mem-
ory can be configured up to a size of 48 kilobytes. For a block size of 256 threads, the search depth
may not exceed 8 before the capacity is exceeded.

1 // ...

2 size_t stackEntrySize = sizeof(boardConfig_t) + sizeof(bitfield_t);

3 // double search depth for next child grid

4 // and make sure not to exceed shared memory capacity.

5 size_t childDepth = MIN(depth * 2,

6 MAX_SHARED_MEM_SIZE / (blockDim.x * stackEntrySize) - 1);

7

8 nQueensKernelDynamic <N><<<numChildBlocks , blockDim.x,

9 sharedMemSize , stream >>>(childConfigs , childDepth ,

10 numChildConfigs , true , freeCounter);

11 // ...

Listing 3: Building up on DP-2, adding dynamic search depth yields the DP3 -Kernel.

3.4 DP-SWAP: Shared memory swapping kernel

Memory access and dynamic memory allocation are expensive operations. Next to the call overhead
of kernels, they impose a major bottleneck. This approach builds up on top of DP-3 and aims
at reducing the frequency of memory access operations by introducing improved coalesced access
patterns to leverage the full bandwidth of global memory.

This approach consists of three phases and is built on the idea of using the fast shared memory
as a self-managed cache for operations on the global device memory. The first phase initializes
the self-managed buffer (see Listing 4) and is issued before the actual computation. During the
computation phase of the kernel, all threads in a block that find valid configurations place them
in a designated memory region (see Listing 5). The last phase begins as soon as all threads of a
block have finished the traversal of their corresponding subtrees. As Listing 6 indicates, all threads
concertedly copy the contents of the shared memory to global memory. The first thread of a block
subsequently launches a new grid.

1 // ...

2 extern __shared__ char sharedMemory [];

3

4 const uint stackSize = (depth + 1) *

5 min(blockDim.x, numThreads - (blockIdx.x * blockDim.x));

6

7 boardConfigEx_t ** swapMemory = (boardConfigEx_t **) sharedMemory;

8 uint* numChildConfigs = (uint *)(swapMemory + 1);

9 boardConfigEx_t* configStacks = ((boardConfigEx_t *) sharedMemory)+1;

10 boardConfigEx_t* childConfigs = configStacks + stackSize;

11

12 const uint bufferVolume = (MAX_SHARED_MEM_SIZE -

13 sizeof(boardConfigEx_t) * (stackSize +1)) / sizeof(boardConfigEx_t);

14 const uint bufferThreshold = bufferVolume - stackSize;

15 // ...

Listing 4: The initialization phase of DP-SWAP allocates the buffer based on the memory demands of
the configuration stack. Furthermore, the threshold for triggering the swapping phase is determined.

222

International Journal of Networking and Computing

The major challenge for this approach is that the capacity of shared memory is very limited.
Furthermore, a decent amount of memory is already used to record the state of each thread. As a
result thereof, it may happen that a thread-block runs into a number of valid child configurations
that exceeds the capacity of the shared memory buffer. In order to deal with this situation, all
running threads have to be suspended and the swapping process has to be initiated once a certain
filling level of the buffer has been reached. This necessitates a mechanism that is able to record the
progress of running threads, so that their progress is not lost. An effective strategy for solving this
issue is provided by extending the state of each thread with an additional bit-field, which indicates
which configurations have already been checked by each thread.

1 // ...

2 if (stackPtr == depth) { // at end of subtree , store new child configs to SM

3 childConfigs[atomicAdd(numChildConfigs , 1)] = configStack[stackPtr];

4 bitfield = configStack[--stackPtr]. visited;

5 continue;

6 }

7 if (* numChildConfigs > bufferThreshold) { // buffer threshold reached

8 while (stackPtr >= 0) { \\ copy all states from the stack

9 childConfigs[atomicAdd(numChildConfigs , 1)] =

10 configStack[stackPtr --];

11 }

12 break; // terminate search and proceed with swapping

13 }

14 // ...

Listing 5: During the computation phase, valid child configurations are placed in the buffer.

In the worst case, all threads have to store all of their stack entries. This worst case assumption
defines the threshold, which when reached enforces a preemptive termination of all threads to start
the swapping process and launch a child grid subsequently. Due to this preemptive termination
mechanism, it is possible that child grids start at different depth levels of the search-tree. As a
consequence, an adaptive search depth is not possible in this approach. In contrast to the previous
approaches, only one child grid per block is launched instead of a per-thread basis. In order to fully
exploit coalesced access patterns, all relevant data structures are stored using structures of arrays
instead of arrays of structures. In conjunction with the swapping approach, this method extensively
consolidates memory operations.

1 // ...

2 __syncthreads ();

3 if (* numChildConfigs == 0) return; // no swapping necessary

4 uint numChildBlocks = (* numChildConfigs + blockDim.x - 1) / blockDim.x;

5 unsigned int* swapMemoryHeader = 0;

6 if (threadIdx.x == 0) { // allocate memory from thread 0

7 swapMemoryHeader = malloc(sizeof(boardConfigEx_t) * (* numChildConfigs + 1));

8 *swapMemoryHeader = numChildBlocks;

9 *swapMemory = ((boardConfigEx_t *) swapMemoryHeader) + 1;

10 }

11 __syncthreads (); // copy configs to global memory

12 for (int i = 0; i < (* numChildConfigs / blockDim.x) + 1; ++i) {

13 uint index = i * blockDim.x + threadIdx.x;

14 // ...

15 (* swapMemory)[index] = childConfigs[index];

16 }

17 __syncthreads ();

18 if (threadIdx.x == 0) { // launch child grid

19 // ...

20 nQueensKernelSwapping <N> <<<numChildBlocks , blockDim.x, SM_SIZE , stream >>>

21 swapMemoryHeader , *numChildConfigs , childDepth , true);

22 }

Listing 6: In the swapping phase, all threads copy the contents of the buffer to global memory.

223

A Performance Evaluation of Dynamic Parallelism for Fine-Grained, Irregular Workloads

The major limitation of this approach is the limited size of shared memory, which results in
a small buffer capacity for valid configurations. As soon as the capacity is exceeded, all running
threads have to be terminated. This causes a decent waste of resources, since the results of compute
tasks that did not deliver results in time are wasted. Furthermore, a larger number of configurations
has to be copied. Dynamic swapping would help to alleviated this drawback. However, a proper
implementation is not feasible with the currently available means of synchronization. The block-wide
barrier synchthreads() cannot be used, since many threads follow a different branch of execution.
Another approach is the employment of atomic operations and active waiting to implement a custom
barrier. The problem with this approach is that the CUDA runtime does not provide any guarantees
that the execution of threads does not progress equally ? a fact which has been confirmed in a
practical evaluation. As a consequence, it is currently not possible to implement dynamic swapping
and abortively terminating threads remains as the only option.

4 Evaluation

This section provides an evaluation of the implementation approaches presented in Section 3. For
that purpose, all implementations are benchmarked and compared to the approaches of Somers
[21] and Feinbube et al. [8]. First, an overarching performance evaluation is provided covering all
approaches. In the succeeding sections, a detailed discussion is provided for each approach. All
measurements reported in this section were performed during exclusive time slots on the test system
specified in Table 1. The NVIDIA GK110 GPU was utilized, which employs the Kepler architecture
that supports compute capability 3.5 and thus Dynamic Parallelism.

Table 1: Specifications of the test system.

Processor 2 × Intel Xeon E5620 (Westmere-EP)

Memory 6 × 4 GB PC3-10667 reg ECC DIMM

GPU compute device 2 × NVIDIA Tesla K20x [15]

Operating system SuSE Linux Enterprise Server 11 SP2

CUDA version 5.5

GPU driver 331.20

4.1 Overarching performance evaluation

The performance of each approach was measured for a queen count in the range of 8≤N≤16. Fig-
ure 8 illustrates the performance results for the approaches DP-1, DP-2 and DP-3 and compares
them to both a serial CPU-based [21] and a parallel GPU-based [8] reference implementation. The
central message that is conveyed by the measurements is that all implementations based on Dy-
namic Parallelism perform distinctly worse than the reference implementations. It appears as if
the utilization of Dynamic Parallelism comes with high fixed costs, as all implementations perform
especially poor for small N . While DP-1 and DP-2 are even outperformed by the serial CPU-based
reference for the range of tested N , no implementation manages to outperform the GPU-based ref-
erence implementation. Although the implementation strategy of DP-3 manages to provide decent
performance improvements compared to DP-1 and DP-2, it still lacks behind the performance of
the GPU reference. Due to reasons of clearness, the measurements for DP-SWAP are supplemented
in Figure 9. Unfortunately, DP-SWAP does not provide any performance improvements compared
to DP-3. In contrary, it performs worse for all N with N ≥ 13.

The utilization of Dynamic Parallelism depends a lot on using the correct parameters for tuning
parameters such as search depth, block size or shared memory utilization. Many such parameters
exist that often influence each other, which makes it hard to obtain an universal configuration

224

International Journal of Networking and Computing

tim
e

[m
s]

0,01

0,1

1

10

100

1.000

10.000

100.000

N
8 9 10 11 12 13 14 15 16

DP-1
DP-2
DP-3
GPU Baseline
CPU Baseline

Figure 8: The approaches based on Dynamic Parallelism are not able to outperform the GPU
reference [8], partially even the serial CPU reference [21]. Results are plotted on a log. scale.

that provides optimal performance. Many parameters could only be retrieved through experimental
evaluation, which strongly limits the applicability to practical applications.

4.2 DP-1: Thread swarming kernel

A practical investigation was conducted to retrieve optimal operating conditions for the thread
swarming approach with respect to stream utilization and search depth. Various tests across the
tested range of values for N with 8≤N≤16 were performed. Testing different values for the search
depth parameter z revealed the best overall performance levels were obtained for z = 3.

Regarding the utilization of streams, the investigation attests a huge beneficial performance
impact for using multiple streams and small N , whereas the advantage of using streams shrinks
for large N (see Table 2). Since larger values of N result in a growing number of dynamically
created threads, a possible explanation for the observed performance characteristics might be that
the overhead caused by the numerous kernel launches consumes a predominant portion of the overall
execution time. As a consequence, a balanced distribution of the actual computation fails to outweigh
the costs of kernel launches.

Table 2: The performance impact of applying streams for multiple N is reported. The explicit use of
streams in DP-1 yields faster execution times various N . Measurements are reported in milliseconds.

N / streams 8 9 10 11 12 13 14 15

default stream 17 36 82 265 818 2.974 10.603 46.111
multiple streams 5 6 9 32 155 780 5.232 39.163

225

A Performance Evaluation of Dynamic Parallelism for Fine-Grained, Irregular Workloads

tim
e

[m
s]

1

10

100

1.000

10.000

N
8 9 10 11 12 13 14 15 16

DP-3
DP-SWAP

Figure 9: The swapping approach fails to gain speed-up over DP-3 for all N . Increased shared
memory consumption and static search depth are likely causes. Results are plotted on a log. scale.

4.3 DP-2: Condensed kernel with static search depth

The condensed approach with static search depth improved performance compared to DP-1, which
is a result of increasing the amount of work that is processed per thread. However, a certain degree
of unbalanced workload distribution is effected by the static search depth. As reported in Table 3,
grids that are launched at progressed row numbers start upon fewer valid configurations and only few
threads can progress to deeper rows. However, increasing the search depth per grid increases shared
memory consumption and reduces the number of blocks that can reside on a single multiprocessor.
Thus, multiprocessors have fewer opportunities to apply optimizations such as latency hiding.

4.4 DP-3: Condensed kernel with dynamic search depth

Having implemented a dynamic search depth for child grids resulted in a much more homogeneous
workload distribution as illustrated in Table 3. This is reflected by the distinct performance gains
over DP-2, which uses a static search depth for all grids. However, finding the correct growth
function and the optimal value for the initial search depth required much effort.

The choice of the initial search depth and the growth function heavily depends on the structure
of the search-tree, and thus is very problem dependent. For the N-Queens problem, the number
of branches drastically decreases at increasing depths. As a consequence, applying an exponential
growth function worked well for the problem. Correspondingly, other problems that come with
increased branch counts at deeper levels would profit from a degressive growth function.

4.5 DP-SWAP: Shared memory swapping kernel

Contrary to the expectations, introducing massively coalesced memory access patterns did not result
in improved performance. The main reason for this outcome is the increased shared memory con-
sumption, the increased number of configurations that have to be passed to child grids and last but
not least the lack of an adaptiv search depth. An undesired side-effect of this optimization approach

226

International Journal of Networking and Computing

is that the increased shared memory consumption decreases the occupancy of multiprocessors and
thus effectively prevents latency hiding.

For the approaches DP-1, DP-2 and DP-3, exceeding the upper limit for nested kernel launches
can be effectively prevented by choosing appropriate values for the search depth parameters. For
this approach however, there are no guarantees that the limit is not overstepped. In the worst case
it could happen that the initial configuration of a thread is carried on across several child grids, as
the assigned thread is always terminated before it can finish its task. The risk for such situations
increases for small search depths and large problem sizes.

Table 3: Indicated are the number of valid child configurations (min, max and average), that have to
be processed by child grids for (N = 12). Applying dynamic search depth results in a more balanced
number valid child configurations.

approach initial row search depth min max average

static 1 4 1196 1597 1401.33
static 5 4 1 60 7.97

dynamic 1 2 59 73 63.00
dynamic 3 4 65 255 145.22

5 Conclusion

This work investigates novel approaches for improved workload distribution using Dynamic Paral-
lelism for fine-grained, irregular workloads. A case study was conducted using the N-Queens problem
as an exemplary workload. For the given problem, an evaluation of our approaches revealed that
the benefits of improved workload distribution were outweighted by the overhead caused by nested
kernel invocations and dynamic memory allocations. As a consequence thereof, none of the evaluated
strategies managed to outperform the GPU-based reference implementation [8] and some approaches
even lagged behind the performance of the serial CPU-based reference [21].

However, many aspects of the presented strategies are general enough to be applied to other
search-tree or backtracking based algorithms. Approach DP-2 investigated a novel memory manage-
ment strategy for passing large data volumes to child grids. The method handles memory allocations
on a per-block level to provide simplified access patterns for child grids and to reduce the overall
number of allocation operations. Furthermore, a comparison between the condensed approaches
using static and dynamic search depth (DP-2 and DP-3, respectively) demonstrated, that evenly
distributed workloads result in decent performance gains. Additional strengths and the applicability
of the presented approaches were discussed in Section 4. Further implementation details have been
documented in the masters thesis by Frank Schlegel [20].

For all means of optimizations, it was crucial to manually tune parameters like block size, shared
memory size or search depth. This is a major hurdle for implementing portable code that performs
well on different hardware as well as for varying kinds of input. Especially for fine-grained workloads,
the developer has to be careful not to counteract on essential means of optimization such as latency
hiding. Overall, the most notable obstacles faced with Dynamic Parallelism are the high overhead
costs of launching nested kernels and the limited amount of shared memory for assembling param-
eters for child grids. However, these bottlenecks will most likely be alleviated by future hardware
generations.

227

A Performance Evaluation of Dynamic Parallelism for Fine-Grained, Irregular Workloads

Acknowledgement

This paper has received funding from the European Union’s Horizon 2020 research and innovation
programme 2014-2018 under grant agreement No. 644866.

Disclaimer

This paper reflects only the authors’ views and the European Commission is not responsible for any
use that may be made of the information it contains.

References

[1] Peer-to-peer for computational grids: mixing clusters and desktop machines. Parallel Comput-
ing, (January 2007), 2007.

[2] Jordan Bell and Brett Stevens. A survey of known results and research areas for n-queens.
Discrete Mathematics, 309(1):1–31, January 2009.

[3] Max Bezzel. Proposal of Eight Queens Problem. Berliner Schachzeitung, 3:363, 1848.

[4] Daniel Cederman and Philippas Tsigas. On dynamic load balancing on graphics processors. In
Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hard-
ware, pages 57–64. Eurographics Association, 2008.

[5] Sanjay Chatterjee, Max Grossman, Alina Sb̂ırlea, and Vivek Sarkar. Dynamic task parallelism
with a gpu work-stealing runtime system. In Languages and Compilers for Parallel Computing,
pages 203–217. Springer, 2013.

[6] Long Chen, Oreste Villa, Sriram Krishnamoorthy, and Guang R Gao. Dynamic load balancing
on single-and multi-gpu systems. In Parallel & Distributed Processing (IPDPS), 2010 IEEE
International Symposium on, pages 1–12. IEEE, 2010.

[7] Cengiz Erbas, Seyed Sarkeshik, and Murat M Tanik. Different perspectives of the N-Queens
problem. In Proceedings of the 1992 ACM annual conference on Communications, CSC ’92,
pages 99–108, New York, NY, USA, 1992. ACM.

[8] Frank Feinbube, Bernhard Rabe, Martin von Löwis, and Andreas Polze. NQueens on CUDA:
Optimization Issues. In Proceedings of the 2010 Ninth International Symposium on Parallel and
Distributed Computing, ISPDC ’10, pages 63–70, Washington, DC, USA, 2010. IEEE Computer
Society.

[9] L R Foulds and D G Johnston. An Application of Graph Theory and Integer Programming:
Chessboard Non-Attacking Puzzles. Mathematics Magazine, 57(2):pp. 95–104, 1984.

[10] Xiaohuang Huang, Christopher I. Rodrigues, Stephen Jones, Ian Buck, and Wen-mei Hwu. Scal-
able SIMD-parallel memory allocation for many-core machines. The Journal of Supercomputing,
64(3):1008–1020, September 2011.

[11] Stephen Jones. Introduction to dynamic parallelism. Presentation at GPU Technology Confer-
ence (GTC), 2012.

[12] Khronos OpenCL Working Group. The OpenCL Specification, Version 2.0, 2013.

[13] K Kise, T Katagiri, H Honda, and T Yuba. Solving the 24-queens Problem using MPI on
a PC Cluster. Technical report, Graduate School of Information Systems, The University of
Electro-Communications, 2004.

228

International Journal of Networking and Computing

[14] Christian Lauterback, Qi Mo, Dinesh Manocha, and Chapel Hill. Work distribution methods
on GPUs. 2009.

[15] NVIDIA Corporation. Nvidia Tesla K20X GPU Accelerator – Board Specification, 2012.

[16] NVIDIA Corporation. CUDA C Programming Guide, March 2015.

[17] Thomas B. Preußer, Bernd Nägel, and Rainer G. Spallek. Putting Queens in Carry Chains.
Technical report, Technische Universität Dresden, 2009.

[18] Martin Richards. Backtracking Algorithms in MCPL using Bit Patterns and Recursion. Com-
puter Laboratory University of Cambridge, 1997.

[19] Timothy J Rolfe. A specimen MPI application: N-Queens in parallel. ACM SIGCSE Bulletin,
40(4):42–45, November 2008.

[20] Frank Schlegel. Lastbalancierung auf GPUs mittels Dynamic Parallelism. Masters thesis (in
german), Hasso Plattner Institute for Software Systems Engineering, University of Potsdam,
July 2014.

[21] Jeff Somers. The N-Queens Problem - a study in optimization.
http://jsomers.com/nqueen demo/nqueens.html, 2002.

[22] Markus Steinberger, Michael Kenzel, Bernhard Kainz, and Dieter Schmalstieg. ScatterAlloc:
Massively Parallel Dynamic Memory Allocation for the GPU. In Innovative Parallel Computing
(InPar), pages 1–10, 2012.

[23] Krishnahari Thouti and S. R. Sathe. Solving N-Queens problem on GPU architecture using
OpenCL with special reference to synchronization issues. In 2nd IEEE International Conference
on Parallel, Distributed and Grid Computing, pages 806–810. IEEE, December 2012.

[24] Stanley Tzeng, Brandon Lloyd, and John D. Owens. A GPU Task-Parallel Model with Depen-
dency Resolution. IEEE Computer, 45(8):34–41, 2012.

[25] Sven Widmer, Dominik Wodniok, Nicolas Weber, and Michael Goesele. Fast Dynamic Memory
Allocator for Massively Parallel Architectures. In Proceedings of the 6th Workshop on General
Purpose Processor Using Graphics Processing Units, pages 120–126, Houston, Texas, 2013.
ACM.

229

