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Abstract

Performance analysis and troubleshooting of cloud applications are challenging. In partic-
ular, identifying the root causes of performance problems is quite di�cult. This is because
profiling tools based on processor performance counters do not yet work well for an entire virtu-
alized environment, which is the underlying infrastructure in cloud computing. In this work, we
explore an approach for unified performance profiling of an entire virtualized environment by
sampling only at the virtual machine monitor (VMM) level and applying common-time-based
analysis across the entire virtualized environment from a VMM to all guests on a host machine.
Our approach involves three parts, each with novel techniques: centralized data sampling at the
VMM-level, generation of symbol maps for programs running in both guests and a VMM, and
unified analysis of the entire virtualized environment with common time by the host-time-axis.
We also describe the design of unified profiling for an entire virtual machine (VM) environment,
and we actually implement a unified VM profiler based on hardware performance counters. Fi-
nally, our results demonstrate accurate profiling. In addition, we achieved a lower overhead than
in a previous study as a result of having no additional context switches by the virtual interrupt
injections into the guests during measurement.
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1 Introduction

Performance analysis and troubleshooting of cloud applications are challenging, but these measures
provide opportunities to reduce costs by improving the e�ciency of resource utilization. Service-level
performance management tools for clouds have been enhanced for practical use. Accordingly, these
tools now allow system administrators to quickly confirm performance problems and resource-level
bottlenecks even in complex virtualized environments. However, no practical system-wide tools for
virtualized environments, such as profilers, provide the detailed information that would be required
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to know why such problems occur. Currently used solutions to such problems include virtual ma-
chine (VM) migration and reallocation of resources. However, such methods may allow the return
of the same problems and ine↵ective use of resources, and they can create potentially higher oper-
ational management costs. Moreover, performance-critical applications, such as high performance
computing (HPC) and mission-critical (MC) systems, have become increasingly virtualized in recent
times. Therefore, program-level performance optimization for applications in virtualized environ-
ments has become a requirement. Thus, a practical and useful profiler for VMs is required for
general system engineers and administrators, in addition to OS/virtual machine monitor (VMM)
developers and researchers. However, in virtualized environments, the practical use of profiling tools
based on processor performance counters has not advanced significantly, unlike the case in native
environments.
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Figure 1: Profiling scopes in an entire viratulized environment.

Figure 1 indicates all scopes in an entire virtualized environment. System-wide profiling is
necessary for understanding accurate characteristics of VM performance and for resolving the root
causes of VM performance problems. Even in guests, standard profilers have become available using
the virtualized performance counters by VMM in recent times. However, there are cases where their
profiling results are insu�cient to analyze guest programs. This is because standard profilers in
guests cannot have a system-wide scope that includes all guests, all VMs, and an underlying VMM
in an entire virtualized environment. Standard profilers in guests have only a single guest scope. It
is di�cult to grasp accurate VM behavior only by an analysis of a single guest without system-wide
analysis. This is because a virtualized environment is very complex due to the inclusion of multiple
guest-OSes, VMs, and a VMM on a host. For example, in some cases, performance problems in
guests are caused by other guests or a VMM. Moreover, guest-inside profiling cannot provide a
grasp of steal time. Each guest has a steal time in which it was unable to run because a physical
CPU could not be assigned to a guest. Hence, System-wide VM profiling is necessary. According to
previous studies, the main issue with system-wide VM profiling is that profiling must be distributed
to each VM [19]. Therefore, additional context switches are inevitable for conventional methods [8].

The goal of this paper is to present an approach that should help to overcome the di�culties in
conventional VM profiling. We describe a method in which an entire virtualized environment can be
profiled, from the VMM layer to the guest-inside. This is unified profiling, which is realized using
three novel techniques. The first is centralized data sampling at the VMM level. Execution infor-
mation to identify programs running in both guests and a VMM is centrally sampled at the VMM
level only. The second is generation and collection of symbol map information of programs executed
in both guests and a VMM; these operations are performed in each guest and in a VMM only once
after the host-level centralized sampling is concluded. As a result, profiling delegation [8, 7] in guests
during measurement is no longer required, even in system-wide profiling. In addition, this second
technique makes it possible to convert guest sampling data into meaningful symbol names with map
information. The third technique is unified analysis of the entire virtualized environment, including
guest applications, with the host time as the common base time. This technique helps to provide an
understanding of the correct behavior of applications executed in guests. One challenge in achieving
success is the determination of a method for converting sampled data into meaningful symbol names
of the guest applications by these three techniques, without additional profiling overhead. The main
contributions of this paper are as follows:
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• This paper proposes a novel unified performance profiling of an entire virtualized
environment by sampling only at the VMM level and applying common-time-based
analysis across the entire virtualized environment from a VMM to all guests on a
host machine.

• This paper presents quantitative evaluations of the proposed method using real
applications.

• This paper reveals steal time even in case of no oversubscription of CPU. Such steal
time is unknown by existing standard OS tools.

The remainder of this paper is organized as follows: Section 2 introduces conventional work on
VM profiling and clarifies unresolved points. Section 3 details the proposed new method for unified
VM profiling. Section 4 provides evaluation results for the accuracy and overhead of the new method
and presents a case study of performance tuning using the unified VM profiling. Finally, Section 5
concludes this paper with future directions.

2 Conventional Performance Profiling

2.1 For Native Environments

Performance profilers have been widely used in native environments to optimize program perfor-
mance and diagnose the causes of performance degradation. For example, the profiler collects exe-
cution information of a running program each time a specified number of performance event counts
has been passed. Then, the profiler analyzes the collected data and indicates the frequency at which
various programs or functions are being executed by displaying CPU utilization based on running
programs. These statistical profile results can be used to detect program hotspots and determine
the cause of performance degradation. Thus, a profiler is an indispensable statistical analysis tool
for performance tuning and debugging.

Figure 2: Profiling function blocks and
processing flow.
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Figure 3: Converting sampling data into symbol
names with map info.

Figure 2 illustrates the function blocks and processing flow of profiling. Generally, this process
consists of three parts. The first is collection, which becomes the input for the next analysis; the
second is analysis, which is the profile analysis itself; and the last is the result, which is the output
of the analysis. The collection part consists of two blocks: (1) an execution information-sampling
block and (2) a map information-gathering block. Block (3), the statistical analysis block, is in the
analysis part. These shaded blocks (1), (2), and (3) are our approach targets.

In the sampling measurement block (1), the running program is interrupted at fixed intervals,
and execution information of the interrupted program is sampled. Hardware performance counters
trigger the sampling through the counter overflow interrupt after a specified number of event counts.
For example, once a profiler sets a configuration of sampling interrupt that is generated after the
occurrence of 10,000 ”CPU Unhalted Cycles” events, interrupt occurs after 10,000 CPU Cycles.
At every interrupt, the profiler captures a process ID (PID) and a program counter (PC) of the
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interrupted program as execution information. Finally, PIDs and PCs are sampled periodically
through the performance counter overflow interrupt.

Sampling data consisting of a PID and a PC should be converted into a process name and a
function name that are meaningful symbol names. For this purpose, the process information and
object files must be gathered. A PID can be used to identify the execution process, and a PC value
can be used to determine the function name, as shown in Figure 3.

2.2 For Virtualized Environments

Ten years have passed since Xenoprof [19] was introduced, which was the first typical profiler for
virtualized environments. However, the practical use of performance counter-based VM profilers
has not advanced significantly, unlike the case in native environments. Although each conventional
method for VM profiling has advantages, they share a common disadvantage in that the overhead by
additional context switches between the VMM and the guest, as shown in Figure 4. The additional
context switches are required due to virtual interrupt injections for guest-inside sampling or for
interpreting guest data. In this section, first, we analyze the problems with the use of conventional
VM profiling methods from the perspective of profiling at both the guest level and the VMM level.
Then, we also explain the points to be resolved as part of our challenge to the practical use of
performance counter-based VM profiler.

Figure 4: Additional overhead in conventional methods.

Profiling at guest level with virtualized performance counters: Standard profilers (e.g.,
Intel VTune [6], Oprof [17], and PAPI [22]) based on hardware performance counters have become
able to work even in guest environments. Previously, unmodified native profilers were not avail-
able in guests because performance counters were not exposed to guests by most VMMs. However,
recently, some VMMs provide a function of virtualized performance counters. This function vir-
tualizes performance counters and time-shares them among guests. Specifically, a VMM executes
the context switch of hardware performance counters and adjusts some of the counter results to
match the expectations of the profiler [24]. VMware has already provided this capability since ver-
sion ESXi5.1 [13]. Xen is being enhanced to support this function [21]. Although Kernel-based
Virtual Machine (KVM) [15] and Linux perf [23] use a similar approach, standard profilers have not
been available in KVM guests thus far [12, 16]. The development version of PAPI, even in KVM
guests, may use performance counters except for the profiling use. The reason PAPI cannot profile
in guests is because counter overflow may not be implemented for PAPI [14]. Thus, in some guest
environments, guest-inside profiling has become available by standard profilers using the virtualized
performance counters.

In contrast, it is still di�cult to grasp accurate VM behavior only by guest-inside profiling with-
out system-wide profiling. This is because there are cases where the root causes of problems in
guests lie in other guests or a VMM. Moreover, guest-inside profiling cannot provide a grasp of steal
time in which a guest was unable to run because a physical CPU could not be assigned to that
guest. Currently, Linux and KVM/Xen support reporting steal time. This is a sort of a paravir-
tualized function that provides information from the VMM on how often a VM was scheduled out.
In PAPI 5, this function is used to implement compensation for steal time in the PAPI get virt usec
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routine under KVM. However, this function only provides system-wide steal time values. PAPI only
returns per-process results. Therefore, it is hard for PAPI to automatically and completely adjust
process time measurements in guests. On this problem, Weaver et al. stated that steal time is only
an issue if a machine is over-subscribed with VMs, and in most HPC situations only one task is
running per node, so this might not be a critical limitation [28]. On the other hand, in more general
virtualized environments, this become a critical limitation. In most general cloud-service situations,
VMs and virtual CPUs are overcommitted to physical resources. Therefore, the steal time is an
issue to be resolved in this work. For this purpose, system-wide profiling is necessary. Among the
above standard profilers, only Oprof supports system-wide profiling for a virtualized environment,
but only for Xen. That is Xenoprof, a VMM level profiler described below.

Profiling at VMM level with delegation: A host-based method—that is, VMM level
profiling—is expected to be an e↵ective solution because it can grasp the entire virtualized environ-
ment with integrated analysis. In fact, the results of the VMM-level approaches of Xenoprof [19] and
Du et al. [8] have already proved that centralized data sampling at the VMM level and delegating
guest profiling into each guest are very useful methods for VM profiling.

However, the delegation method has a problem. The di�culties of realizing VMM-level profiling
lie in sampling the execution information of guest applications and interpreting samples correspond-
ing to guests. Xenoprof and Du et al. resolved these problems by delegating the processes that
cannot be done at the VMM level to each guest. However, this delegation profiling has more over-
head than native profiling because counter overflow interrupts need to be forwarded to the guest by
virtual interrupt injections, which therefore add more context switches between the VMM and the
guest. Du et al. stated that although profiling should generate as little performance overhead as
possible, adding context switches is inevitable for performance counter-based profiling in virtualized
environments [8].

In contrast, Linux perf [23] can sample the program counter (PC) and CPU privilege level of
the guest from its virtual CPU-state saving area and can profile a guest Linux kernel running
in KVM [15] without such a distributed delegation [29]. However, the identifier corresponding to a
process in a guest is not sampled. Although samples of the guest Linux kernel can be interpreted, user
applications in a guest and other non-Linux guest OSes cannot be profiled. In contrast, Xenoprof [19]
and Du et al. [8] solved this problem by using delegation profiling. That is, there is a trade-o↵
between analysis of user applications and the reduction of overhead that comes with additional
context switches between the VMM and the guest.

Therefore, in this work, we aimed to solve both problems simultaneously in system-wide profiling.

Challenge: To enable VMM-level profiling to analyze programs by a function from the VMM
layer to the OS and user applications running in guests, without additional context switches.

3 Unified Profiling in a virtualized environment

3.1 Hardware Support for x86 Virtualization

Some facilities of a hardware-assisted virtualization are important. This is because our design of
unified VM profiling is based on these facilities. In this section, we review the key features of x86
hardware assistance for virtualization. We use these features to implement two techniques, in the
aforementioned our three novel techniques, on the x86 platform, which is the most frequently used
platform for virtualized environments. In 2005, since Intel Pentium 4 Processor 662/672, Intel intro-
duced their first-generation hardware support for x86 virtualization, known as Intel Virtualization
Technology (Intel VT) [4, 5]. Intel VT for x86 is also referred to as VT-x. This first-generation VT-x
started to support CPU virtualization, which is the virtualization of the x86 instruction-set archi-
tecture. It can eliminate the need for software-based virtualization (e.g., binary translation, para-
virtualization). In 2008, since the Nehalem architecture, Intel introduced their second-generation
VT-x, which included memory management unit (MMU) virtualization with extended page ta-
ble (EPT) and virtual processor identifier (VPID). EPT makes it possible to eliminate the need
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for software-managed page table virtualization (e.g., shadow page table). We use these hardware-
assisted facilities of Intel VT-x in order to realize unified performance profiling in a virtualized en-
vironment. Our first technique, that is centralized data sampling, uses the data structure for CPU
virtualization introduced in the first-generation VT-x. Furthermore, in our second technique, the
generated symbol maps of guest programs becomes available with EPT enabled, which is introduced
in the second-generation VT-x.

Figure 5: VMX-mode transitions with VMCS.
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Figure 6: SLAT with EPT on the x86 platform.

Figure 5 shows the hardware-assisted new execution-mode and its mode transitions with a virtual
machine control structure (VMCS). The new execution-mode is called virtual machine extensions
(VMX) and was introduced with first-generation VT-x. VMX provides two execution modes. One
is the root mode in which VMM/Host-kernel is executed. The other is a non-root mode for guest
environments. Each mode provides support for all four privilege rings (ring 0 to 3). These two
execution modes allow both the VMM and the guest OS to use all four privilege rings by running
di↵erent modes on the same processor. However, execution of privileged instructions or occurrence
of interrupts in non-root mode causes the control to be transferred from non-root mode to root
mode. A VM hands over control to a VMM to execute the privileged instruction or the interrupt.
This control transfer, from the guest/VM to the host/VMM, is called VM-Exit. Then, once the
handling of privileged instruction or interrupt is completed, the VMM returns control back to the
VM. This is called VM-Enter. Intel VT helps to accelerate VM-Exit and VM-Enter with the memory
structure VMCS. A VMCS is a data structure that holds the processor register states (e.g., PC,
control registers) of the guest and the host. These states are saved and restored, automatically by
CPU, into the VMCS at VM-Exit/VM-Enter. Furthermore, a VMCS corresponds to a virtual CPU
(vCPU) of the VM and can be manipulated by not only hardware but also VMM-level software
running in root mode. Therefore, we decided to implement a unified VM profiler as a VMM-level
driver.

Figure 6 shows the mechanism of hardware-assisted x86 MMU virtualization, which is commonly
called second level address translation (SLAT), with EPT. This additional page table, also called
a nested page table, was introduced with second-generation VT-x. Thereby, even in a virtualized
environment, the guest OS becomes able to continue to maintain page mappings of each process
inside the guest, using the self-managed CR3, as in the case of a native environment, as a pointer
to a process page table. In a native environment, the OS uses page tables to translate addresses,
from logical addresses to physical ones. On the other hand, in a virtualized environment without
hardware assistance for MMU virtualization, the VMM maintains page mappings, from the guest’s
physical addresses to the host’s physical ones, also known as machine addresses, in its internal data
structures. The VMM also stores page mappings, from the guest’s logical addresses to machine ones,
in shadow page tables that are exposed to the hardware for page table walk. Shadow page tables, in
other words, map guest-logical pages directly to machine pages. The VMM also needs to keep these
shadow page tables synchronized to the guest page tables. To maintain consistency between guest
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page tables and shadow page tables, the writes to CR3 by the guest OS—that is, modifications of
page tables—are trapped, and the VMM resets CR3 with other values corresponding to shadow page
tables. With the introduction of EPT, the VMM can use the hardware support to eliminate the
need for shadow page tables on the x86 platform. Hence, the writes to CR3 by the guest OS need
not be trapped. The rewrites of CR3 by the VMM are no longer required. Therefore, the profiler
can sample the CR3 values set directly by the guest OS.

3.2 Design Overview

In this section, we propose the unified profiling of the entire virtualized environment to tackle the
aforementioned challenge, as explained in Section 2.2. The following three novel key techniques are
the main points of our proposal. One challenge in achieving success is the determination of a method
for converting sampled data into meaningful symbol names of the guest applications by these three
techniques, without additional profiling overhead.

Key Technique 1. How to sample data: Centralized data sampling at VMM
level
Execution information to identify programs running in both guests and a VMM is cen-
trally sampled at the VMM level only.

Key Technique 2. How to obtain guest apps symbol names: Generating map
info of guest apps and interpreting guest sampling data with map info
First, this technique is generation and gathering of symbol map information of programs
executed in both guests and a VMM; these operations are performed in each guest and
in a VMM after the host-level centralized sampling is concluded. As a result, profiling
delegation [8, 7] in guests during measurement is no longer required, even in system-wide
VM profiling. Then, guest sampling data are converted into symbol names with symbol
map information of guest applications

Key Technique 3. How to analyze data: One common-time-based analysis by
host time
The third is unified analysis of the entire virtualized environment, including guest appli-
cations, with the host time as the common base time. This technique helps to provide
an understanding of the correct behavior of applications executed in guests.

The details of each technique are explained in Section 3.3 through 3.5. In these sections, we
describe the implementation of unified profiling for a KVM environment because we determined
that developing a VMM-level module driver was easier in KVM than in other VM environments.
KVM is full virtualization software based on a Linux kernel and is implemented as a kernel module.
Therefore, the VMM-level is the same as the Linux kernel layer, and a VMM-level sampling driver
should also be implemented as a Linux kernel module. Thus, sampling driver implementation is
KVM-specific. In other words, sampling driver implementation and the loaded position in software
stack depend on virtualization type and VMM implementation. Therefore, the implementation of
Key Technique 1 will be VMM-specific. Other techniques will be common to almost VMMs.

The hardware platform we used was Intel 64 Nehalem architecture. The performance counter
overflow interrupts should be non-maskable interrupts (NMIs) since all software, including the OS,
drivers, and VM emulation, can be sampled using an NMI as a sampling trigger. Sampling data are
all then recorded into the kernel bu↵er in turn without aggregation.
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3.3 Centralized Data Sampling

The execution information of the VMM and the programs running in guests should be sampled
centrally at the VMM level, along with host TSC. Sampling data are all recorded in turn, without
aggregation, into the host-kernel bu↵er held in memory by each physical CPU (pCPU) rather than
by each virtual CPU (vCPU).

The following contents should be sampled on each physical CPU at each overflow interrupt.

Physical context information (host context)
(1) Time Stamp Counter (TSC)
(2) Process ID (PID)
(3) Program Counter (PC)
Virtual context information (guest context)
(4) VPID (VIRTUAL PROCESSOR ID)
(5) Guest PC (Program Counter)
(6) Guest CR3 (Control Register 3)
(7) Exit reason number

Guest context data to be sampled can all be collected from VMCS. Through VMCS, we sample
Guest PC, Guest CR3, VPID, and VM-Exit reason number, as shown in Figure 7.

Figure 7: Field contents of VMCS.

We chose the physical TSC value as host time information, which becomes one common base
time for unified analysis. There are two reasons we used TSC. The first is that TSC is the most
precise clock source, and the second is that it has the lowest reading overhead against the system.
However, TSC also has a disadvantage. Although TSC exists in each CPU, we implicitly assume
that all TSCs have the same value in the same system. In fact, time skew among TSCs may occur,
although it is negligible in many cases. In fact, in our experimental system, maximum skew among
CPUs was less than 1 usec, which is negligible compared with using 1 msec as the sampling rate.

A PID is sampled from the management structure area in the OS memory. For example, in
Linux, the area is known as the task structure. A PC is sampled from the memory area in which
the architecture states of processes interrupted by a counter overflow are saved.

In contrast, virtual context information of the program running in a guest is sampled from the
VMCS memory area. For unified profiling, guest CR3 is especially important information that can
be mapped to the PIDs of the processes in guests. A PID of a guest program is not saved in the
VMCS because the PID is not a register state. Instead of the PID value itself, we can sample
guest CR3 from the VMCS as a process identifier of a guest program. The CR3 value is a page
table address that specifies a process address space, as shown in Figure 6. Therefore, CR3 holds a
process-unique value and can be used instead of PID to show which process is current.
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After the sampling measurement, map information should be gathered in each guest. It is
necessary to convert a guest CR3 value into a PID. PIDs and CR3 values are both managed by the
OS and can be gathered from the OS management structure on each guest OS. We can then generate
pair information as map information. For example, the Linux kernel has a PID in its task structure
and has a CR3 value in its memory management structure linked from the task structure. We can
gather and generate pair information of all processes in a guest kernel. Moreover, the kernel system-
map, object map information, and object files should also be collected to analyze guest programs
according to function-level.

3.4 Guest Data Interpreting

In Figure 8, the part surrounded by the broken line is the technology we have added to the conven-
tional method, as shown in Figure 3.

guest PC(i) guest CR3

(ii) Map Info
of guest apps

PID

func1( ) 
@ ProcA

Figure 8: Flow of interpreting guest sampling data with symbol map info of guest apps.

Initially, the process identifier should be sampled to identify executed programs, such as the PID.
We decided to sample a value of guest CR3 from VMCS, as shown by (i) in Figure 8, instead of the
PID shown in Figure 3. This is because the PIDs in guests cannot be sampled from the VMM. The
PIDs in guests are not directly visible to the VMM. Therefore, a VMM-visible process identifier of
a guest other than the PID is needed for running programs in guests. For this purpose, we use the
page table address, which is used sometimes as the address space identifier (ASID) [11, 3]. The page
table is generally a per-process table in all modern operating systems. Consequently, the ASID acts
to form a unique global address for each process. Moreover, a control register holds a pointer to the
page table. On the x86 CPU, the CR3 register holds the page table address under the control of the
OS. The CR3 values of each virtual CPU in the guests are saved into VMCS. Therefore, the guest
CR3 is visible to the VMM, and the VMM-level profiler can sample the guest CR3 value from the
VMCS, as shown in Figure 8.

Next, mapping information is needed to convert the CR3 value into a PID. The CR3 and PID
are both managed by the OS. We decided to gather the CR3 and PID from the OS management
structure on each guest OS and to use this paired information as map information, as shown by
(ii) in Figure 8. As a result, CR3 can be used to identify executed programs via CR3-PID paired
information, which we also refer to as map information. Furthermore, gathering on each guest OS
can be operated only once after the sampling measurement. As a result, we succeeded in sampling
execution information of guest user applications without the overhead of delegation measurement
via virtual interrupt injection. In addition, if guest OS is Linux, we can collect map information of
exiting processes during sampling measurement. We can hook process-exit with Linux kernel API.
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Thus, Key Technique 2 can be used to resolve the challenge of applying the techniques needed
in realizing a practical profiler for the cloud. This second technique in this study was to assume a
private cloud as the target because its usage restrictions are looser than those in public clouds. That
is, gathering map information would be possible in private clouds, and the trade-o↵ mentioned in
Section 2.2 could be resolved.

3.5 Common Time Based Analysis

Each guest had a blank time in which it was unable to run because a physical CPU could not be
assigned to a guest. We believed that the blank time should be interpolated with host time as a
single common time, and we chose the physical TSC value as host time. As a result, unified profiling
results reflect the actual time even in guests, including the blank time. This helps us to understand
the correct behavior of applications executed in guests.

To interpolate the blank time in each guest, the compensated sampling data of each guest should
be generated prior to the analysis. Figure 9 illustrates how to build the compensated virtual guest
sampling data as input data to be used in analyzing guest programs.

Figure 9: Converting host-level real sampling data to guest-level virtual sampling data, based on
host time as common time.

Figure 9 assumes an environment where a system has two pCPUs and two VMs are running:
VM0 and VM1. VM0 has one vCPU, and VM1 has two vCPUs. No vCPU is bound to a pCPU.
Time axis represents elapsed time by host time. This figure shows sampling data which are sampled
from t1 to t4. The virtual guest sampling data are generated with the host time by the virtual CPU
unit from real host-level sampling data. The above figure displays the sampling format held in the
kernel bu↵er. We can convert this above format into the below format as virtual guest sampling
data. When doing so, the host time is used as the base common time. Thereby, the blank time of
each vCPU can be reflected correctly. A blank time is an interval that does not include valid periodic
sampling data corresponding to the vCPU. The blank time can be classified into two states, halt
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or steal, by the VM-Exit reason. If the exit reason number is 12, the blank time is recognizable as
halt. Otherwise, the blank time is handled as steal. When a vCPU is in a steal state, it is ready to
run on a pCPU but not assigned to a pCPU. This is because no pCPU is available for the respective
vCPUs at that time. Finally, by using the below data as input information for guest analysis, the
behaviors of programs in each guest can be analyzed and understood.

4 Evaluation

We implemented a unified profiler as the Linux kernel module driver, which is the same as the
VMM-level driver in the KVM environment. The OS, applications, and VMM were all unmodified.
Sampling is executed only in a VMM.

We explain in this section the feasibility of implementing unified performance profiling. First,
we demonstrate that the applications running in guests can also be analyzed by function-level in
each process. Second, we demonstrate that a blank time can be classified into two states: steal
or halt. Third, we evaluate its e↵ectiveness in achieving low overhead. The overhead is evaluated
quantitatively and is compared with that in previous work. Finally, we present a case study of
performance tuning.

Table 1: Summary of experimental environment.

Host Environment
CPU Intel Xeon X5570 (Nehalem-EP), 2.93GHz
Num of booted CPU 1 or 2 (§4.1 to §4.3), 4 (§4.4)
Memory 24GB
OS RHEL Server 6.31 64bit (kernel 2.6.32-279 x86 64)
VMM KVM (qemu-kvm-0.12.1.2)

Guest Environment
Num of vCPU 1 or 2 (§4.1 to §4.3), 4 (§4.4)
Memory 4 GB (§4.1 to §4.3), 20 GB (§4.4)
OS RHEL Server 6.31 64bit (kernel 2.6.32-279 x86 64)
Domain names guestOS1, guestOS2, guestOS3

Table 2: Measurement setup.

Profile measurement configurations
Sampling rate 1 msec
Duration 30 sec (§4.1 to §4.3), 60 sec (§4.4)
Sampling base event CPU CLK UNHALTED.REF P

Workload 1 (§4.1 to §4.2)
Program libquantum 0.9.1
Compiler gcc version 4.4.6 20120305
Optimization -O2
Invocation ./shor 1397 8

Workload 2 (§4.3)
Program MySQL 5.1.61-4.el6 for x86 64
Benchmark SysBench 0.4.12-5.el6 for x86 64

Workload 3 (§4.4)
Program Java HotSpot 64-Bit Server VM, version 1.7.0 79
Benchmark SPECjbb2013-Composite:Single JVM

1Red Hat Enterprise Linux Server release 6.3
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The experimental environment is summarized in Table 1. The host machine is a Fujitsu Primergy
BX900 blade server with one, two, or four CPU cores available. For the native environment, the OS
is the Linux kernel 2.6.32. For the virtualized environment, the VMM is qemu-kvm-0.12.1.2 based on
Linux kernel 2.6.32. The guest environment consists of one VM or three VMs activated on one, two,
or four pCPUs, and all guests have one, two, or four vCPUs. Guest domain names are guestOS1,
guestOS2, and guestOS3. The guest OS version is the same as the host. Table 2 shows the conditions
under which the profiling measurements were made. We used libquantum [18], MySQL [1], and Java
VM (JVM) [20] as a running program during measurement. They are profile target programs.
First, libquantum was used for fundamental accuracy evaluation. Libquantum-0.9.1 is one of the
applications included in the SPEC CPU2006 [25]. It is a C library for the simulation of quantum
mechanics, with a special focus on quantum computing. The invocation of the Shor command
executes Shor’s factoring algorithm. Then, MySQL was used for evaluation of overhead against the
performance of online transaction processing (OLTP). MySQL is one of components of the widely
used LAMP (Linux, Apache, MySQL, and PHP/Perl/Python) implementations. Therefore, it is a
popular database for web applications. Moreover, we used Sysbench [2] for measurement of MySQL’s
OLTP performance. Finally, JVM was used in order to demonstrate performance tuning with unified
profiling. We used SPECjbb2013 [26] for measurement of java transaction throughput.

In advance of showing evaluation results, we clarify five terms to classify profiling results. The
following five terms are description for identifying profiling approaches. Among them, unified VM
profiling is the fifth item that includes both host-level profiling and guest-level profiling.

1. Native profiling: Conventional profiling
(a) Profiled programs are running in HOST
(b) Data sampling is performed in HOST
(c) Profile result shows programs running in HOST (but can not distinguish VMs)
2. Guest-inside profiling: Conventional approaches for VM profiling
(a) Profiled programs are running in GUEST
(b) Data sampling is performed in GUEST or HOST-and-GUEST
(c) Profile result shows programs running in GUEST
3. Host-level profiling: Subset of unified VM profiling
(“Host-level” is the same meaning as aforementioned “VMM-level”.)
(a) Profiled programs and VMs are running in HOST
(b) Data sampling is performed in HOST
(c) Profile result shows programs and VMs(guest domain names) running in HOST
4. Guest-level profiling: Subset of unified VM profiling
(a) Profiled programs are running in GUEST
(b) Data sampling is performed ONLY in HOST
(c) Profile result shows programs running in GUEST
5. Unified VM profiling: Our approach for VM profiling, consisting of above 3 and 4
(a) Profiled programs are running in both GUEST and HOST
(b) Data sampling is performed ONLY in HOST
(c) Profile result shows programs running in both GUEST and HOST (and can also show
VM domain names)

4.1 Profiling results

First, to verify the accuracy of our profiler in function-level, we ran libquantum as the profiled
application in both a native environment and a virtualized environment. The native environment
has one pCPU. The virtualized environment has one vCPU and consists of one VM: guestOS1.
Table 3 shows the output of native profiling. Table 4 presents the results of guest profiling. We
compare these results in Figure 10. We expected that the results of VM profiling would be close to
those of native profiling. However, from experience, we were also sure that there had to be a slight
di↵erence between them because of non-deterministic factors (e.g., the impact of operation of VMM
or other VMs).

135



Unified Performance Profiling of an Entire Virtualized Environment

Table 3: Native profiling.

Total samples:29938 OS:USER = 1.17%:98.83%
Samples %Ratio Function Module
18281 61.06 quantum to↵oli libquantum
5836 19.49 quantum sigma x libquantum
4624 15.45 quantum cnot libquantum
674 2.25 quantum swaptheleads libquantum
171 0.57 quantum objcode put libquantum
14 0.05 rb reserve next event vmlinux
12 0.04 update wall time vmlinux
12 0.04 rb end commit vmlinux
11 0.04 run timer softirq vmlinux
10 0.03 ring bu↵er lock reserve vmlinux

Table 4: Unified VM profiling. (guest-level profiling)

Total samples:29996 OS:USER:steal = 1.49%:93.47%:5.04%
Samples %Ratio Function Module
16984 56.62 quantum to↵oli libquantum
6752 22.51 quantum sigma x libquantum
3330 11.10 quantum cnot libquantum
1511 5.04 [ steal ] (outside)
766 2.56 quantum swaptheleads libquantum
198 0.66 quantum objcode put libquantum
28 0.09 apic timer interrupt vmlinux
22 0.07 native apic mem write vmlinux
17 0.06 run hrtimer vmlinux
17 0.06 pvclock clocksource read vmlinux
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Figure 10: Comparison between native profiling and unified VM profiling.
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According to Figure 10, the experimental results are as expected. The tendencies of both results
are roughly the same, although in this case, the di↵erence from 3% to 5% can be confirmed, based
on the total number of samples. Moreover, our unified profiler is found to be able to indicate steal
cycle counts as the cause of the above slight di↵erence. This is the e↵ect of common-time-based
analysis by host time. The steal must include non-deterministic causes to be solved. In fact, from
the analysis of exit reason number, it can be seen that the causes of these steal cycles include external
interrupts (exit-reason number 1) and APIC accesses inside the guest (exit-reason number 44). The
former accounts for 82% of these steal cycles, and the latter accounts for 18%. From the results, we
found that the impact of steal could occur without other VMs running on the same host. Such steal
is unrecognizable with existing standard OS tools.

Table 5: Unified VM profiling. (host-level profiling)

Total samples:29914 OS:USER:VM = 4.71%:0.34%:94.95%
Samples %Ratio Function Module
28402 94.95 [ guestOS1 ] (VM1)
82 0.27 vmx vcpu run kvm intel
41 0.14 update curr vmlinux
34 0.11 copy user generic string vmlinux
32 0.11 kvm arch vcpu ioctl run kvm
32 0.11 rb reserve next event vmlinux
31 0.10 (stripped local functions) qemu-kvm
29 0.10 ring bu↵er lock reserve vmlinux
24 0.08 update wall time vmlinux
24 0.08 x86 decode insn kvm

Table 5 shows the output of host-level VM profiling. According to the comparison between the
host-level results and the guest-level results in Table 4, the host-level results except guestOS1 and
the guest-level result of steal are in close agreement. Thus, the accuracy of our VM profiler can be
confirmed.

Next, we executed libquantum in two di↵erent processes, process 1 and process 2, in both a
native environment and a virtualized environment. Table 6 and Table 7 present the profiling results
of these two processes by native profiling and guest-level profiling. Regarding the result in the native
environment, Figure 11a shows that the same functions of each process are almost the same in CPU
usage. Simultaneously, we observed that CPU usage of each process was also similar constantly on
49.9%:49.9% with top command. Even in the virtualized environment, if similar CPU usage between
each process can be seen, we can expect that the same functions of each process have almost the
same number of samples and the same CPU usage. Indeed, even in the virtualized environment, we
can observe constantly similar CPU usage between each process on 49.9%:49.9% with top command,
and this expectation can be also confirmed with our VM profiler, as shown in Figure 11b. Thus, our
unified VM profiling is found to be able to distinguish user processes accurately.

Then, we had two vCPUs available in the guest and executed each libquantum process bonded
to the specified either vCPU. Table 8 and Table 9 show the profiling results of these two processes by
guest-level profiling. Table 8 presents the results of profiling on vCPU0 and Table 9 presents that of
profiling on vCPU1. We expected similar tendencies to Figure 11b. In fact, as shown in Figure 12,
this expectation can be confirmed. The same functions of each process are almost the same in CPU
usage. Furthermore, according to the comparison of the number of samples on between the one
vCPU and the two vCPUs, the number of samples in each environment are in close agreement, as
shown in Figure 13. Thus, our unified VM profiling can provide good results with multiple vCPUs
overcommitted to a pCPU.

Finally, we had two pCPUs available and pinned each vCPU to the specified either pCPU. Each
libquantum process was executed on the specified either vCPU. Table 10 and Table 11 show the
profiling results of these two processes by guest-level profiling. Table 10 presents the results of
profiling on vCPU0 pinned to pCPU0 and Table 11 presents that of profiling on vCPU1 pinned to
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Table 6: Native profiling of two same workloads.

Total samples:29938 OS:USER = 1.27%:98.73%
Samples %Ratio Function Module
8963 29.94 quantum to↵oli libquantum(2)
8915 29.78 quantum to↵oli libquantum(1)
3089 10.32 quantum sigma x libquantum(2)
3052 10.19 quantum sigma x libquantum(1)
2402 8.02 quantum cnot libquantum(1)
2314 7.73 quantum cnot libquantum(2)
324 1.08 quantum swaptheleads libquantum(2)
323 1.08 quantum swaptheleads libquantum(1)
91 0.30 quantum objcode put libquantum(2)
78 0.26 quantum objcode put libquantum(1)
15 0.05 rb reserve next vmlinux
12 0.04 ring bu↵er lock reserve vmlinux

Table 7: Unified VM profiling of two same workloads in a guest.

Total samples:30000 OS:USER:steal = 1.75%:93.27%:4.98%
Samples %Ratio Function Module
8103 27.01 quantum to↵oli libquantum(1)
8094 26.98 quantum to↵oli libquantum(2)
3673 12.24 quantum sigma x libquantum(1)
3633 12.11 quantum sigma x libquantum(2)
1739 5.80 quantum cnot libquantum(1)
1721 5.74 quantum cnot libquantum(2)
1494 4.98 [ steal ] (outside)
392 1.31 quantum swaptheleads libquantum(1)
384 1.28 quantum swaptheleads libquantum(2)
128 0.43 quantum objcode put libquantum(2)
98 0.33 quantum objcode put libquantum(1)
37 0.12 apic timer interrupt vmlinux
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Figure 11: Comparison of profiling results in the same functions between two di↵erent libquantum
processes.

138



International Journal of Networking and Computing

Table 8: Unified VM profiling on vCPU0 in a guest with two vCPUs on one pCPU.

Total samples:30000 OS:USER:steal = 0.75%:46.77%:52.48%
Samples %Ratio Function Module
14994 49.98 [ steal ] (on vcpu1)
8669 28.90 quantum to↵oli libquantum(1)
3210 10.70 quantum sigma x libquantum(1)
1678 5.59 quantum cnot libquantum(1)
750 2.50 [ steal ] (outside)
345 1.15 quantum swaptheleads libquantum(1)
122 0.41 quantum objcode put libquantum(1)
26 0.09 apic timer interrupt vmlinux
18 0.06 pvclock clocksource read vmlinux
8 0.03 spin lock vmlinux

Table 9: Unified VM profiling on vCPU1 in a guest with two vCPUs on one pCPU.

Total samples:30000 OS:USER:steal = 0.90%:46.37%:52.72%
Samples %Ratio Function Module
15006 50.02 [ steal ] (on vcpu0)
8612 28.71 quantum to↵oli libquantum(2)
3176 10.59 quantum sigma x libquantum(2)
1641 5.47 quantum cnot libquantum(2)
811 2.70 [ steal ] (outside)
353 1.18 quantum swaptheleads libquantum(2)
121 0.40 quantum objcode put libquantum(2)
38 0.13 apic timer interrupt vmlinux
28 0.09 pvclock clocksource read vmlinux
14 0.05 native apic mem write vmlinux
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Table 10: Unified VM profiling on vCPU0 in a guest with two vCPUs on two pCPUs.

Total samples:29998 OS:USER:steal = 1.05%:93.71%:5.23%
Samples %Ratio Function Module
17243 57.48 quantum to↵oli libquantum(1)
6743 22.48 quantum sigma x libquantum(1)
3545 11.82 quantum cnot libquantum(1)
1570 5.23 [ steal ] (outside)
458 1.53 quantum swaptheleads libquantum(1)
114 0.38 quantum objcode put libquantum(1)
38 0.13 pvclock clocksource read vmlinux
26 0.09 apic timer interrupt vmlinux
24 0.08 native apic mem write vmlinux
9 0.03 rb reserve next event vmlinux

Table 11: Unified VM profiling on vCPU1 in a guest with two vCPUs on two pCPUs.

Total samples:30000 OS:USER:steal = 1.05%:96.36%:2.59%
Samples %Ratio Function Module
17873 59.58 quantum to↵oli libquantum(2)
6520 21.73 quantum sigma x libquantum(2)
3697 12.32 quantum cnot libquantum(2)
777 2.59 [ steal ] (outside)
653 2.18 quantum swaptheleads libquantum(2)
155 0.52 quantum objcode put libquantum(2)
25 0.08 native apic mem write vmlinux
23 0.08 pvclock clocksource read vmlinux
21 0.07 apic timer interrupt vmlinux
16 0.05 rb reserve next event vmlinux
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pCPU1. We expected similar results to Figure 12. In fact, as shown in Figure 14, this expectation
can be confirmed. Moreover, we expected that the number of samples per pCPU would be close to
previous ones. According to Figure 15, the experimental results are as expected. Thus, our unified
VM profiler works well with multiple pCPUs.

4.2 Blank Time Classification: Steal or Halt

We need to distinguish between halt and steal for performance debugging and tuning. Halt is
scheduled and controlled by OS. Consequently, the cause of halt exists inside self OS environment.
By contrast, the cause of steal exists outside self OS environment. Steal is caused by the operation
of a VMM. There is the cause of steal in a VMM or in other VMs.

First, in this section, we boot three guests (guestOS1, guestOS2, and guestOS3) on one pCPU
in order to verify the accuracy of steal results in guest-level profiling. Each guest has one vCPU. In
each guest, we run libquantum in the same way. Table 12 presents the results of guest-level profiling
for guestOS1-domain. Table 13 shows the results of host-level profiling. According to Table 12,
the steal in VM1 is found to be in a ratio of 69.39%. Moreover, the total ratio except VM1 in
host-level is 69.39% from Table 13. These ratios are the same, which indicates the accuracy of the
steal analysis by our unified profiler.

Table 12: Unified VM profiling (guest-level results of guestOS1), with stolen by other VMs.

Total samples:29999 OS:USER:steal = 0.79%:29.82%:69.39%
Samples %Ratio Function Module
20816 69.39 [ steal ] (outside)
5156 17.19 quantum to↵oli libquantum
2286 7.62 quantum sigma x libquantum
1160 3.87 quantum cnot libquantum
265 0.89 quantum swaptheleads libquantum
73 0.24 quantum objcode put libquantum
21 0.07 apic timer interrupt vmlinux
11 0.04 pvclock clocksource read vmlinux
10 0.03 ring bu↵er lock reserve vmlinux
9 0.03 native apic mem write vmlinux

Table 13: Unified VM profiling (host-level results), running 3VMs.

Total samples:29932 OS:USER:VM = 6.81%:0.68%:92.51%
Samples %Ratio Function Module
9402 31.41 [ guestOS3 ] (VM3)
9161 30.61 [ guestOS1 ] (VM1)
9125 30.49 [ guestOS2 ] (VM2)
137 0.46 vmx vcpu run kvm intel
67 0.22 update curr vmlinux
59 0.20 rb reserve next event vmlinux
59 0.20 (stripped local functions) qemu-kvm
50 0.17 copy user generic string vmlinux
49 0.16 kvm arch vcpu ioctl run kvm
39 0.13 ring bu↵er lock reserve vmlinux

Then, we shut down two guest domains, guestOS2 and guestOS3. we activate only one guest,
guestOS1, in order to verify the accuracy of a halt result (i.e., idle) in guest-level profiling. This
time, we run libquantum for only 10sec during measurement in the guestOS1. The duration of mea-
surement is 30sec, as shown in Table 2. For remaining 20sec, the guestOS1 stays in idle. Therefore,
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we expected that the idle ratio, in both the guest and the host, would account for about two-thirds.
Table 14 shows the results of guest-level profiling and Table 15 shows that of host-level profiling. In
fact, from the results in Table 14, the idle (halt exit) in a guest is found to be in a ratio of 67.40%.
Meanwhile, the ratio of idle function in a host is 66.73%, as shown in Table 15. These ratios are
close to each other and account for about two-thirds, as was expected. Therefore, it can be seen
that the unified VM profiling can correctly grasp the ratio of a guest’s halt. Furthermore, from the
results in this section, we found that the unified VM profiling could classify a blank time into two
states: steal or halt. This is the e↵ect of both exit-reason-number sampling and common-time-based
analysis by host time.

Table 14: Unified VM profiling (guest-level results), with halt executed.

Total samples:30000 OS:USER:IDLE:steal = 0.54%:30.42%:67.40%:1.64%

Samples %Ratio Function Module

20220 67.40 [ idle ] (halt exit)
4987 16.63 quantum to↵oli libquantum
2326 7.76 quantum sigma x libquantum
1063 3.54 quantum cnot libquantum
492 1.64 [ steal ] (outside)
392 1.31 quantum gate1 libquantum
237 0.79 quantum swaptheleads libquantum
61 0.20 quantum objcode put libquantum
50 0.17 mulsc3 libquantum
13 0.04 apic timer interrupt vmlinux

Table 15: Unified VM profiling (host-level results), with halt-exit from a VM.

Total samples:29943 OS:USER:IDLE:VM = 2.17%:0.17%:66.73%:30.93%

Samples %Ratio Function Module

19982 66.73 poll idle vmlinux
9260 30.93 [ guestOS1 ] (VM1)
25 0.08 vmx vcpu run kvm intel
21 0.07 ring bu↵er lock reserve vmlinux
17 0.06 update curr vmlinux
17 0.06 do select vmlinux
15 0.05 rb reserve next event vmlinux
15 0.05 (stripped local functions) qemu-kvm
13 0.04 trace clock local vmlinux
11 0.04 apic timer interrupt vmlinux

4.3 Profiling Overhead

For practical use, there must be low overhead in addition to the accuracy of profiling results. On
the other hand, in order to improve accuracy, there must be more sampling data because profiling
accuracy is based on statistical analysis method. For this purpose, either fine-grained sampling
or long-term sampling is available. In general, the former is used. However, the shorter sampling
rate is, the higher overhead becomes. That is, there is a trade-o↵ between overhead and accuracy.
Consequently, we need to grasp the shortest sampling rate within the allowable overhead. In general,
service-level performance management tools are accepted in overhead from 5% to 10%. In contrast,
the allowable overhead of profiling appears to be less than 5%, because profilers should be used even in
performance-critical cases. Profiling measurement inevitably produces performance overhead against
the system because of the handling of counter overflow interrupts and data sampling processes.
Ideally, however, we require a lower overhead of 1% or less for practical use. Accordingly, we
evaluated the overhead to examine whether the unified profiling could be used in practice.
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Figure 16: Overhead of unified VM profiling.

First, we used an evaluation workload similar to that of Du et al. [8]. The workload code consists
of two functions, which perform floating arithmetic. One consumes about 80% of CPU cycles, and
the other consumes about 20%. We determined the overhead by comparing the execution times,
with and without profiling, of a computation-intensive workload that executed a fixed number of
iterations. Previous research [8] indicated the native profiling overhead was 0.048% at 2.5 msec-
sampling-rate, while in our native environment, the overhead of profiling at that rate is 0.041%, as
shown in Figure 16a. These results are in close agreement. Therefore, the base condition of our
experiment environment is nearly the same as that in the previous study. Moreover, KVM system-
wide profiling overhead in the previous study was 0.441% at 2.5 msec-sampling-rate. According to
the previous KVM system-wide results, we estimated that the overhead of VM profiling without
delegation would be 0.125%. In fact, Figure 16a shows that our result of 0.133% is close to the
expected result. Therefore, the e↵ect of eliminating the delegation can be confirmed.

Figure 16b shows the overhead results (blue curve) and the allowable borderline (red line) of our
profiling overhead. From the results, we found that, with unified profiling, we could use 1 msec as
the sampling rate for practical use, even in virtualized environments. In the guest environment, the
overhead of unified profiling at 1.0 msec-sampling-rate is 0.302%, and that of 0.1 msec-sampling-rate
is 3.084%. The result of the 1 msec-sampling-rate has an overhead su�ciently lower than 1%.
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Figure 17: Overhead against OLTP throughput of MySQL.

Next, we used MySQL [1] for evaluation of overhead against the performance of online transaction
processing (OLTP). MySQL is widely used open-source relational database management system
(RDBMS). MySQL is one of components of the widely used LAMP (Linux, Apache, MySQL, and
PHP/Perl/Python) implementations. Therefore, it is a popular database for web applications.
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Moreover, we used Sysbench [2] for measurement of MySQL’s OLTP performance. In this evaluation,
we had two pCPUs and two vCPUs available, and pinned each vCPU to the specified either pCPU.
Furthermore, a MySQL daemon process and a Sysbench process were bonded to the specified either
vCPU. Sampling was continuous during the measurement by Sysbench. We ran the measurement
five times, reporting the mean and standard deviation. Figure 17 shows the overhead against OLTP
throughput, imposed by unified profiling. As a result, we can confirm that 1 msec-sampling-rate is
su�cient for practical use. In addition, we found that overhead became lower than previous simple
evaluation. This is because profiling overhead depends on CPU utilization. Figure 18 and Figure 19
presrent the OLTP throughputs and CPU usage. On the previous overhead test, CPU usage was
almost 100%. On the other hand, in case of MySQL, CPU usage was less than about 93%, as shown
in Figure 19.
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Figure 18: OLTP throughput by MySQL.
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Figure 19: CPU utilization by OLTP.

4.4 Performance Tuning Using Unified VM Profiler

In this section, we identify a root cause of low performance of SPECjbb2013 [26] executed in a guest.
The SPECjbb2013 benchmark has been developed from the ground up to measure performance based
on the latest Java application features. It is relevant to all audiences who are interested in Java server
performance. In this case, the host has four pCPUs and 24 GB physical memory. The guest has four
vCPUs and 20 GB memory. Each of the vCPUs is pinned to each of the pCPUs. To understand
a characteristic of the behavior of JVM in a guest, we profile the guest in which SPECjbb2013 is
running. Sampling is executed around at the timing of max-jOPS, with 1.0 ms-sampling-rate and
60 sec duration.

Table 16: SPECjbb2013 profile in a guest.

Total samples:240007 OS:USER:IDLE(halt):steal = 7.43%:81.83%:0.01%:10.73%
Samples %Ratio Function Module
74427 31.01 (jvm internal functions) java
26637 11.10 SpinPause libjvm.so
25749 10.73 [steal] (outside)
24123 10.05 ParMarkBitMap::live words in range libjvm.so
9174 3.82 ParallelTaskTerminator::o↵er termination libjvm.so

Table 16 shows the sampling result. Table 16 indicates that the ratio of SpinPause is 11.10%
and the ratio of ParMarkBitMap::live words in range is 10.05%. They don’t usually appear in
a profiling of SPECjbb2013. ParMarkBitMap::live words in range routine is included in garbage
collection (GC) implementation. Consequently, lock contention seems to have occurred because of
GC. The setting of JVM Heap memory size was 8 GB. Therefore, we increase heap size, from 8
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GB to 16 GB. As a result, the performance improved, as shown in Figure 20. From the result in
Table 17, we can confirm that ParMarkBitMap::live words in range and SpinPause disappear and
the ratio of JVM improve.
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Figure 20: Tuning result using unified VM profiler.

Table 17: Tuned SPECjbb2013 profile in a guest. (increased heap memory size of JVM)

Total samples:240009 OS:USER:IDLE(halt):steal = 5.44%:90.08%:0.02%:4.46%
Samples %Ratio Function Module
180019 75.01 (jvm internal functions) java
10715 4.46 [steal] (outside)
3376 1.41 JVM LatestUserDefinedLoader libjvm.so
2265 0.94 PSPromotionManager::copy to survivor space libjvm.so
1628 0.68 pvclock clocksource read vmlinux

5 Conclusions and Future Work

Virtualized environments have become popular as the platform underlying cloud computing. How-
ever, performance profilers are not yet in practical use for VMs. Therefore, diagnosing performance
problems of applications executed in guests is still di�cult.

In this paper, we presented the problems and challenges towards practical profiling of virtualized
environments and proposed three novel techniques for unified profiling of an entire virtualized en-
vironment. We actually developed a unified profiler and demonstrated that unified profiling works
well, as was expected, even in a virtualized environment. The unified profiling results reflect the
actual time even in guests, with the host time, including the blank time in which it was unable to
run due to having no physical CPU available. As a result, this proposed method, with hardware
performance counters, might help to identify the reason for performance degradation of workloads
in both guests and a host. Consequently, more e↵ective use of resources is expected to help lower
management costs.

In the future, scale-out profiling for multiple hosts needs to be discussed in terms of cloud en-
vironments. In addition, not only the conventional reactive profiling use but also proactive use is
suggested for more practical use in datacenters. For this purpose, a performance analysis tool like
a profiler based on processor performance counters should be running at all times and should auto-
matically indicate the symptoms of problems. Our central goal is to realize such a practical profiler
for cloud computing. For this purpose, our objective includes three phases shown in Figure 21: (a)
inventing a host-wide performance profiling method for a virtualized system with CPU performance
counters; (b) making infrastructure for scale-out profiling across multiple hosts; and (c) enhancing
the sampling and analysis methods for continuous profiling. The first is a basic method for one
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Figure 21: Approach concept of cloud performance analysis.

host and is indispensable for performance debugging of a complex virtualized system. This method
is the core technology for cloud performance analysis. The second is required to scale out above
the basic method for multiple hosts in a cloud environment. The third is required for performance
troubleshooting of in-service cloud environments. It is very hard to reproduce the problems of cloud
environments, like Mandelbugs [9, 10, 27]. This is because program behaviors on each VM in a
cloud are complex and non-deterministic. Therefore, to debug and resolve problems, it is helpful to
monitor performance events continuously and analyze them in real-time. Moreover, it is necessary
to collect the execution information of running programs during the operation at proper collecting
interval. In this study, we focused on the first phase.
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