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Abstract

In this paper we design and implement an algorithm for finding the biconnected components
of a given graph. Our algorithm is based on experimental evidence that finding the bridges
of a graph is usually easier and faster in the parallel setting. We use this property to first
decompose the graph into independent and maximal 2-edge-connected subgraphs. To identify
the articulation points in these 2-edge connected subgraphs, we again convert this into a problem
of finding the bridges on an auxiliary graph.

It is interesting to note that during the conversion process, the size of the graph may increase.
However, we show that this small increase in size and the run time is offset by the consideration
that finding bridges is easier in a parallel setting. We implement our algorithm on an Intel i7
980X CPU running 12 threads. We show that our algorithm is on average 2.45x faster than
the best known current algorithms implemented on the same platform. Finally, we extend our
approach to dense graphs by applying the sparsification technique suggested by Cong and Bader
in [7].

Keywords: Biconnected components, Least common ancestor, 2-edge connected components,
Articulation points

1 Introduction

The biconnected components of a given graph are its maximal 2-connected subgraphs. Finding the
biconnected components of a graph is an important problem in graph theory. This problem has
been pushed to the fore recently for its use as a subroutine in other graph based computations such
as shortest paths, betweenness-centrality, and the like [6]. The problem has applications to network

LA part of this work has appeared previously in 17th Workshop on Advances in Parallel and Distributed Compu-
tational Models, IPDPS Workshops, 2015.
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design too as bridges and articulation points in a communication network indicate lack of robustness
and resiliency to single edge and vertex failures.

Of particular interest has been to design algorithms for sparse graphs as most real world graphs
tend to be sparse in nature [2]. In this direction, Madduri and Slota [15] present the most recent
algorithm for finding the biconnected components of a given graph on multicore architectures. The
work of [15] presents two algorithms, one based on performing multiple BFS, and one based on graph
coloring. The algorithms of Madduri and Slota improve on previous algorithms for the problem in the
parallel setting, most notably those of Tarjan and Vishkin [19] and of Cong and Bader [7]. However,
it is not clear as to which of the two algorithms is a better choice on a given graph. Adding to the
difficulty, the algorithms can differ in their run time significantly, of the order of 5x in some cases.

In this paper, we design a simple and efficient algorithm for finding the biconnected components of
a given sparse graph. Our algorithm has two interesting characteristics to it. Firstly, we observe that
identifying the bridges of a graph can be done more easily compared to identifying the articulation
points. Secondly, based on our first observation, we construct an auxiliary graph that is larger in size
than the given graph with the property that bridges in the auxiliary graph can be used to identify
the articulation points in the input graph. Finally, we provide an extension of this approach to
identify the biconnected components in dense graphs by using edge-pruning technique proposed in
[7].

Our algorithm is easy to parallelize. An implementation of our algorithm on an Intel i7 980X
CPU running 12 threads is 2.45x faster than both the algorithms presented in [15] on an average
on a wide variety of real-world graphs. We also believe that some of the techniques we introduce in
this paper can be of independent interest in designing other graphs algorithms.

1.1 Owur Contributions

Some of the notable contributions from our paper are as follows. We design a new parallel algorithm,
Algorithm LCA-BiCC, for finding the biconnected components of a graph.

One of the important aspects that motivate our algorithm and its approach is to note that
identifying bridges (an edge whose removal disconnects the graph) in a given undirected graph is a
much simpler task in general, and particularly so in sparse graphs. In a sparse graph, one can build
a BFS tree, or just a spanning tree, and mark all edges that are part of some fundamental cycle
(i.e., the cycle induced?® by any non-tree edge). As a result, edges that are not marked are simply
the bridges of the graph. We use this idea in our algorithm (see also Algorithm 3). Since the depth
of the BFS tree in real world graphs is observed to be small, this process of identifying the bridges
is usually very fast. The easy identification of bridges allows us to treat the graph obtained after
removing the bridges as consisting of independent maximal 2-edge connected subgraphs. On these
subgraphs, we now have to find articulation points (a vertex whose removal disconnects the graph)
and identify the biconnected components. Using the observation that finding bridges is easier, we
build an auxiliary graph G} for each maximally 2-edge-connected subgraph G;, i > 1, of G such
that bridges in G’ can be used to quickly locate the articulation points in G; (and hence in G).
This mechanism of removing the bridges to arrive at a decomposition consisting of independent and
maximal 2-edge-connected subgraphs, and exploiting the properties of 2-edge-connected subgraphs,
may be of independent interest in the design of other graph algorithms in the parallel setting.

We propose modifications to one of the algorithms from [15]. These modifications are based on
the observations from the design of Algorithm LCA-BiCC (Algorithm 2), and the modified algorithm
is noticed to be 1.46x faster than Algorithm LCA-BiCC. We extend our results to dense graphs by
making use of the sparsification technique mentioned by Cong and Bader in [7].

1.2 Related work

There are several known parallel algorithms for identifying the biconnected components in the given
graph. For a graph G with n vertices and m edges, Eckstein [8] provided the first parallel algorithm
that takes O(dlog? n) time using O((n+m)/d) processors, where d is the diameter of the BFS tree.

2See [21] for graph theoretic notataions.
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Savage and J4J4 [14] proposed parallel algorithms on CREW PRAM for both sparse and dense
graphs. One of them takes O(log?n) time on O(n?/log®n) processors and is suitable for dense
graphs. The other is for graphs which are sparse in nature and it requires (9(10g2 nlogk) time with
O(mn + log? n) processors where k is the number of biconnected components in the given graph.

Tsin and Chin [20] developed an optimal algorithm for dense graphs that runs in O(log? n) time
using O(n?/log® n) processors. Tarjan and Vishkin [19] provided a O(logn) time algorithm that uses
O(n + m) processors. Cong and Bader [7] demonstrated a parallel speedup over the Tarjan-Vishkin
algorithm on symmetric multiprocessor systems. Edwards and Vishkin [9] demonstrated the parallel
speedup over Tarjan serial algorithm [18] and Tarjan-Vishkin algorithm [19] on XMT manycore
computing platform. Most recently Madduri and Slota [15] proposed two parallel algorithms that
provides considerable speedup over the Cong and Bader approach [7]. A brief description of these
algorithms is presented in Section 2.

1.3 Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we briefly describe the existing algorithms
that are directly relevant to our current work. In Section 3, we develop the required lemmata for our
algorithm that is described in Section 4. We provide the implementation details of our approach in
Section 5. Experimental results of our algorithm are presented in Section 6. Further improvements
are discussed in Section 7 along with experiments. An extended approach to handle dense graphs is
presented in Section 8. The paper ends with some concluding remarks in Section 9.

2 Existing Algorithms

We review in brief some of the parallel algorithms that are most relevant to our present work.

2.1 Tarjan-Vishkin Parallel Algorithm (TV) [19]

The algorithm of Tarjan and Vishkin for identifying the biconnected components in G is designed
for the PRAM model [19] and requires O(log(n)) time with O(n + m) processors. The main steps
in the Tarjan-Vishkin algorithm are as follows. A rooted spanning tree T for the input graph G
is constructed (For notations interested reader can refer to [21]). Using T', two functions low, the
lowest vertex that is either a descendent of v or adjacent to the descendent of v by an edge in G\ T,
and high, the highest vertex that is either a descendent of v or adjacent to the descendent of v by
an edge in G\ T, are computed for each vertex v € G. These functions help define an auxiliary
graph G’ such that the connected components of G’ are the biconnected components of G.

2.2 Cong and Bader [7] Improvement to TV (TV-filter)

An experimental study by Cong and Bader [7] provides an improvement to the Tarjan-Vishkin
([19]) by removing non-essential edges in its computation. This leads to a significant reduction in
computing low, high values and connected components computation. In particular, they define an
edge e as non-essential for biconnectivity if removing e does not change the biconnectivity of the
component it belongs to. They show that edges of G that are not in a BFS tree T" and are also not
in a spanning forest F' of G\ T are non-essential. However, in this algorithm, 7" must be a BFS tree,
which can be difficult to compute in parallel compared to a simple spanning tree. The runtime for
the Cong-Bader approach is O(dia + log n) where dia is the diameter of the graph. The algorithm
is as follows.

2.3 BFS-BiCC

The BFS-BiCC algorithm [15] is an improvement over Cong-Bader’s approach [7] on sparse graphs.
This algorithm is similar to that used by Eckstein [8]. A rooted BFS tree T of the input graph G is
constructed. To identify the articulation points, the BFS-BiCC algorithm considers every vertex u
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Algorithm 1 CoNG-BADER(G)

1: procedure CONG-BADER(Graph G)

2: T < BFS(G) /*Phase I'*/

3 F < BFS(G\T)

4 G'+« (FUT)

5: Biconnected-Components = TARJANVISHKIN-PARALLEL(G') /*Phase IT*/
6

7

8

9:

for all e = (w,w)e G\ (FUT) do /*Phase IIT*/
label e to be in biconnected component containing w and p(w)
: end for
end procedure

and performs a BFS on the graph after removing its parent P(u) (according to T') from the graph
G. During this process BFS-BiCC algorithm keeps track of the level of vertices reached from wu.
If any vertex w with level L(P(u)) or less is reached and u has a path to all its siblings after the
removal of P(u), then P(u) is not an articulation point. The main drawback of this approach is
that it performs BFS from all the vertices of the graph. While there are optimizations introduced to
stop some of these breadth-first traversals, there exist graphs on which such early stopping cannot
be done and on such graphs, Algorithm BFS-BiCC from [15] suffers heavily.

2.4 Color-BiCC

The Color-BiCC algorithm [15] is an improvement over the Cong and Bader approach [7] on sparse
graphs. This is an iterative strategy that is similar to recursive doubling used to compute connected
components in undirected graphs as well as weakly and strongly connected components in directed
graphs [16]. Let par(v) signify the parent articulation point that separates the vertex v from the
root. This algorithm is based on the observation that any two vertices in a biconnected component
will have their least common ancestor set to the par(v). The goal of this approach is to color all
vertices in the biconnected component with a parent level articulation point that is separating the
vertex from the root. As we will show in Figure 5 that the Color-Bicc algorithm is heavily dependent
on the structure of the graph and can be slower than the sequential Tarjan [18] approach in some
cases.

3 Owur Approach for BiCC on Sparse Graphs

In this section we present a simple yet efficient algorithm for identifying the biconnected components
of graph G. Our algorithm is based on our experimental evidence that identifying bridges of a
graph in a parallel setting is a much easier and simpler task. Based on the above observation, we
initially decompose the graph into maximal 2-edge-connected components G, Ga, - - -. For each such
component, G;, i > 1, we construct an auxiliary graph G} where articulation points in G; translate
to bridges in G. Therefore, identifying the bridges of G allows us to identify the articulation points
of GG;, and hence those of G. Using this information, we then identify the biconnected components
of G.

We develop two results (Lemmata 1, 2 and 3) below that will help us present our algorithm.
Towards this, let T' be a rooted BFS tree of G and LCA denotes the least common ancestor. Each
non-tree edge (u,v) in G\ T is a cross edge that connects two different branches of a tree. For an
edge e to be a bridge, e must be part of BFS spanning tree and e cannot be on any cycle induced
by the non-tree edges (u,v) € G\ T.

Now, consider the graph G’ obtained by removing the bridges of G. The resulting graph consists
of maximal 2-edge connected components G1,Gs, - -+ , such that for each pair of vertices u, v in the
same 2-edge-connected component, there are at least two edge disjoint paths between u and v. We
can now treat each such component independently and in parallel to identify the articulation points
within each component. These will also be articulation points of G.
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Let G be a 2-edge-connected graph and T be a rooted BFS tree of G. We use the notation
Vica(G) to denote the set of vertices that are the LCA of the end points of some non-tree edge of G
according to a given BFS on GG. We can classify the vertices of G into two categories as follows.

1. Potential articulation points: We will prove shortly that all the vertices Vic.(G) belong to this
category. A subset of the vertices in Vi..(G) is the set of articulation points of G.

2. Non-articulation points: These are the set of safe vertices whose removal does not disconnect
the graph. All the vertices v € V(G) \ Vica(G) belong to this set.

The above categorization is supported by the following lemma which shows that vertices not in
Vica(G) cannot be articulation points in G.

Lemma 1 Let G be a 2-edge-connected graph and let T be a BFS tree of G. If v is an articulation
point of G, then v € Vio(G).

Proof: On the contrary, assume that a vertex v is an articulation point and is not the LCA of
any non-tree edge of G. If v is on only one cycle in G, then v cannot be an articulation point. So,
we assume in the rest of the proof that v is on at least two cycles in G. Let C1,Cs,--- ,Cy be the
fundamental cycles induced respectively by non-tree edges ey, ez, ,e, € G\ T and pass through
vertex v. Let C; and C; be any two cycles from the set {C1, Ca, ...., Ci} induced by non-tree edges
e; and e; respectively. Let vertices x, y be LCA of the endpoints of e; and e; respectively. It is
evident that z and y should be the ancestors of v as v lies on both the cycles and v ¢ {x,y}. The
relation between x and y can be categorized as follows.

e x = y: In this case the two cycles C; and C; share the same LCA say x and also the vertex v.
This implies that C; and C; share at least an edge (as there are at least two vertices, x and
v, common to both C; and C};). So, even after the removal of v, all edges belonging to C; and
Cj remain in a single biconnected component. Hence, v is not an articulation point.

e x £y, 2= LCOA(z,y), and z & {x,y} : As  and y are ancestors of v there is a path z to
vand v to y in T. As z is the ancestor of x and y there is a path z to z and y to z in T.
This concludes that there is a path from z «~ x ¢~ v «w y «~ z which leads to a cycle in
T. However, T is a BFS tree and cannot have cycles. Therefore, our assumption that v is an
articulation point is not valid.

e x #yand LCA(z,y) € {x,y}: Without loss of generality, we will assume that y = LCA(z,y).
Let C; and C; be any pair of cycles induced by non-tree edges e; and e; and pass through v
with LCA(e;) = « and LCA(e;) = y. Since y is a proper ancestor of z, there is a path from
x e~ v (in T and also in G) that is common to C; and C;. This ensures that there is at
least an edge common between the cycles C; and C;. Similar to the case where z = y, this
allows us to argue that even after the removal of v, all edges of C; and C; remain in a single
connected component. Since the above holds for any pair of cycles passing through v, v is not
an articulation point.

O

The above lemma indicates that we only have to check whether vertices in Viea(G) of G are
articulation points in G. To find these articulation points, we now construct an auxiliary graph G’
as follows. Let T be a BFS tree of G. We use the notation LCA(e) to refer to the LCA of the end
points of the edge e. (Such a notation is used in other earlier works too [12]).

Initialize V(G') = V(G) and E(G’) = E(G). For every non-tree edge e in G \ T, compute the
LCA(e) = z. Let by and be be the neighbours (also called as base vertices) of z in the fundamental
cycle induced by e. We now remove the edges xb; and xby from G’, add an alias vertex for vertex
x as ' to G', and add edges za’, 2'by, and a'by to E(G’). All other edges in G with end points
as x, by or by, remain unchanged. Also, if k cycles C1,Co, -+ ,Ck induced by the non-tree edges
e1,ea, - , ek, respectively share any of the base vertices, then their common LCA vertex, say v,
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cannot be an articulation point with respect to the cycles C1,Cy, - -+, Cy as all these cycles share at
least an edge. Thus, we create only one alias vertex v’ in the auxiliary graph for v with respect to
the above k cycles.

The alias vertices and edges with one end point as an alias vertex have the property that articu-
lation points of G are transformed as bridges in the auxiliary graph G’ as we will show shortly. An
example of the construction of the auxiliary graph is shown in Figure 1. In Figure 1, we consider a
BFS of the graph in Figure 1(a) with z as the source vertex, and edges wx and ts as the non-tree
edges. In the following, we show that bridges in G’ can be used to identify the articulation points
of G.

—1—— Denotes non—tree edge

(a)

Figure 1: Figure (b) shows the auxiliary graph for Figure (a). Edges wx and ts are kept as non-tree
edges and the rest of the edges are tree edges according to a BFS starting from vertex z as the
source.

Lemma 2 Let G be a 2-edge-connected graph, Ta a rooted BES tree of G with root as r, and G’ be
the auziliary graph of G constructed as earlier. For vertices u in G' with u # r, u is an articulation
point of G iff u is an end point of some bridge uv in G' with uw € G and v € G.

Proof:

(only —if) <=:  Consider a vertex w which is not an articulation point in graph G with u # r. We
will show that any edge of type uu’, where v’ is the alias of u, cannot be a bridge in auxiliary graph
G

Let C := {C1,Cs,- -+ ,Cy} be the cycles that pass through vertex u in G. The relation between
vertex u and the such cycles can be categorized as follows.

e 1 is not the LCA of any of the end points of non-tree edges that induces cycles in C: In this
case, no alias vertices are introduced in G’ due to u. Therefore, bridges with u as one end
points does not exist in G’. (Note that G is already 2-edge-connected and has no bridges).

e v is the LCA any two non-tree edges that induces cycles C; and C; in C: According to the
construction of G’, two alias vertices u; and u; are introduced in the auxiliary graph G'.
Further, two edges uu; and uu; are also added to G’. An example is illustrated in Figure 2.

Let x and y be any two distinct vertices on the cycles C; and C; respectively. Since u is not
an articulation point in G, there must be some path P, in G’ between x and y that does not
pass through u as shown in Figure 2. The path P, along with paths Py, Pyu,, and Py,
forms a simple cycle in G’. This indicates that edges wu; and uwu; on this cycle cannot be
bridges in G’. So there is no bridge in G’ with one of the endpoint as u pertaining to cycles
C; and C. The above property holds for any two cycles C; and Cj.
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— = denotes a BFS spanning tree path
denotes a path in the graph

e, and ¢ denote non—tree edges

Figure 2: Figure shows the cycle created by paths Py, Pyu;, Pu;u,, and Py, .. For ease of exposition,
the auxiliary graph shown contains only the changes made with respect to v and not the changes
induced with respect to other vertices.

e v is the LCA of some non-tree edge that induces cycle C; in C: Consider the case where the
number of cycles through u is at least 2. By our assumption, u is not an articulation point.
Let u; be the alias vertex of u. Hence, for some vertex z in C; that is not equal to u, and
another vertex, say the parent of u, there is a path that does not go through u. This path
along with edges uu; and wP(u) mean that the edge wu; is part of a cycle. Therefore, in G,
the edge wuy will not be a bridge.

(if) =: Let u be an articulation point of a 2-edge-connected graph G and let G’ be the corresponding
auxiliary graph. It holds that u has at least two cycles passing through it and not sharing any of
the base vertices. Let b; and b; be one of the base vertices on two fundamental cycles. Let x and
y be two vertices, both distinct from u, on two such cycles C; and C; that get disconnected by the
removal of u. Since u is an articulation point in G, there exists only one path between = and y that
passes through u, say, x —b;, b; —u, u —b; and b; —y. Let u; and uy be any two alias points created
for C; and C;. The corresponding path P, (G’) has the form x — by, by —u1, us —u, u—ug, us — ba,
by —y. Since u is an articulation point, there cannot be a path P,, between = and y in G (and in its
corresponding auxiliary graph G’) that does not pass through w and its alias vertices. As a result
uup remains uncovered in any cycle of G’. Hence, uu; will be a bridge in G'.

O

Lemma 3 Let G be a 2-edge-connected graph, Tg a rooted BES tree of G with root as r, and G’ be
the auxiliary graph of G constructed as earlier. Vertex r is an articulation point in G iff r is the
LCA of more than one non-tree edge of G' according to a BFS in G’ from r, and r is also an end
point of some bridge in G’.

Proof: We use P,,(G) to denote a path between vertices u and v in the graph G.

(only — if) <: Notice that since G is 2-edge-connected, vertex r is on at least one cycle. Further,
since r is the root of the BFS tree of G, for every fundamental cycle that contains r, vertex r is
the LCA of the non-tree edge that induces the cycle. We now make a case distinction as follows.
Now consider the case that more than one cycle passes through r. Let C; and C; be any two cycles
through r induced by non-tree edges e; and e;. In G’, we now introduce two alias vertices r; and r;
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and also the edges rr; and rr;, along with edges between r; and r; to the base vertices of C; and
C;. If r is not an articulation point, then we notice that there are any two distinct vertices x and
y in C; and C; respectively such that there is a path between = and y that does not go through r.
This path between x and y, Py, along with paths P, the edges r;r and rr;, and path P, , creates
a cycle that contains the edges rr; and rr;. Therefore, the edges rr; and rr; cannot be bridges in G’.

(if) =: The same argument from proof of (if) part of Lemma 2 holds true when w is an articulation
point and is the root of the spanning tree.
O

Thus, bridges in the auxiliary graph are a good indicator of articulation points in the original
2-edge-connected graph. Further, it is relatively easy to find the biconnected components of a graph
when the bridges and articulation points are identified. Our approach also indicates that the size of
auxiliary graph in terms of both the number of vertices and the number of edges, is more than the
size of original graph. But, we will see later that for real-world graphs that are sparse in nature,
this increase in size is usually small, and the additional increase in run time can be offset by the
simplicity of our algorithm.

4 Our Algorithm for Biconnected Components

Given Lemmata 1, 2 and 3 we now provide the following algorithm to identify the biconnected
components of a graph G. Algorithm LCA-BiCC shown as Algorithm 2 describes our approach in a
high level as consisting of 5 steps. In Step I, we obtain a BFS tree of the input graph G. In Step II,
we find the bridges of G and also decompose G into its 2-edge-connected components G1,Ga, - - -.
Step IIT onwards, each such 2-edge connected components is treated independently. In step III, for
each G;, an auxiliary graph G is constructed. Step IV identifies non-tree edges of each G}, and Step
V identifies the bridges of the auxiliary graph, and hence the articulation points of G. In Step VI,
the bridges and the articulation points of G are used to identify the biconnected components of G.

Algorithm 2 LCA-BICC(G)

1: procedure LCA-BICC(Graph G)

2 T+ BFS(G) /*Step I'*/

3 {G1,Ga, -} = BRIDGES(G, T') /* Step II*/
4: for all G;i=1,2,--- in parallel do
5.
6

Construct the auxiliary graph G%./*Step IIT*/
Identify the non-tree edges in G} among the newly
added edges to G; from Step III/*Step IV*/

7: {Hy, Hy,---} = BRIDGES(G}, T, )/*Step V*/

8: Check if r; is an articulation point in G}

9: Run a connected components algorithm on (G} \ BRIDGES(G},T})) to identify
the Biconnected Components of G;/*Step VI*/

10: end for

11: end procedure

The correctness of Algorithm 2 is immediate from Lemmata 1,2, and 3. An example run of the
algorithm is presented in Figure 3. In the following, we elaborate on each step of Algorithm 2.

4.1 Step I: BFS on input graph G

We choose an arbitrary vertex r as the source vertex and perform BFS from r and also root the BFS
tree at 7. The output of BFS is stored in two arrays namely L(v) and P(v), where L(v) signifies the
level of the vertex in the BFS spanning tree and P(v) stores the parent of v in the corresponding
BFS tree. For the root r, we set P(r) = —1 and L(r) = 0.
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—— denotes a BFS tree edge ---- denotes a non—tree edge —#~denotes a bridge

eé-—od

Step 4: Identify non—tree edges among the newly added edges Step 5: Identification of bridges in the Auxilary graph

Figure 3: An example run of Algorithm LCA-BiCC. Graph G is BFS tree with non-tree edges (shown
in step I). Vertices marked in a circle in step II are the LCA vertices.

4.2 Step II: Finding the Bridges of ¢

Recall that an edge in G is a bridge if and only if the edge is not on any cycle in G. The above
property can be modified further to say that an edge is a bridge if it is not on any fundamental cycle,
i.e., on cycles induced by non-tree edges according to a spanning tree. To this end, we consider each
non-tree edge e according to the BFS tree T" from Step I and mark all edges in T that are in the cycle
induced by e. Algorithm 3 explains the above steps. As shown in Algorithm 3, for each non-tree
edge e = xy, we traverse up the tree edges from x and y till we reach the LCA of x and y. Each edge
encountered in this process is marked. Edges of T' that are not marked in the above process are the
bridges of G. Also, end points of these bridges with degree at least two are articulation points in G.

For each bridge zy identified above with = P(y), we set P(y) = —1 that essentially decomposes
G into its 2-edge-connected components. We return these 2-edge-connected components as the
output of Algorithm Bridges.

Algorithm 3 BRIDGES(G)

procedure BRIDGES(Graph G, Tree T )
: for all e = (w,v)e G\ T do

1:

2

3 Mark the tree edges that we encounter in the process of computing the LC A(w, v).
4: end for

5: for all e € E(G) do
6 If e is not marked then B < B U {e}

7 end for

8: Return the connected components of G — B
9: end procedure
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We choose to find the LCA of the end points of a non-tree edge by using a traversal from these
end points while more robust algorithms exist for computing the LCA. In the parallel setting, such
algorithms are studied by Soman et al. [17] as an application of range minima queries. Our choice
is however justified by two reasons. Firstly, most real-world graphs have a low diameter as Table 1
shows. As the number of traversals is upper bounded by the diameter, such traversals do not pose
a serious performance bottleneck. Secondly, using range minima query to compute the LCA points
involves non-trivial steps that can be computationally intensive compared to simple traversal.

4.3 Step III: Auxiliary Graph construction

Let G1,Ga, -+, be the 2-edge-connected components of G. As described in Section 3, we create
auxiliary graphs G, G5, - corresponding to the 2-edge-connected components of G. (See also
Figure 3 for an illustration.)

4.4 Step IV: Identify non-tree edges among the newly added edges

In this step, for each 2-edge-connected component G; of G, i > 1, we do the following. We consider
all the edges added to the auxiliary graph G} and mark them as either edges in the BFS tree or
non-tree edges according to BFS. Notice that we do not have to run a BFS traversal again on G,
and can extend the BFS on G; to identify the non-tree edges.

In particular, consider a vertex u which is the LCA of a non-tree edge e and vertices v and w
are the children (neighbors) of u in the BFS tree T' that are on the cycle induced by e. As part of
the auxiliary graph construction, we add a vertex u’, and edges uu’, u'v, and v'w. We delete edges
uv and ww. Such vertices v and w can now be end points of edges added during the construction
of the auxiliary graph. Each such vertex v picks one of the alias vertices of its parent in the BFS of
G’. The remaining edges between v and alias vertices will be marked as non-tree edges.

4.5 Step V: Identifying Articulation Points of GG

In this phase we use the Algorithm 3 for identifying the bridges in each of the graphs G;.G’27 cee
For each such bridge e = zy, notice that one of the end points is a vertex that is not in G and is
added to the corresponding auxiliary graph during Step III of the algorithm. Such vertices are the
articulation points of G.

4.6 Step VI: Finding the Biconnected Components of ¢

In this step, we utilize the information of bridges identified in Step V to identify the biconnected
components of G. Let F’ denote the forest of auxiliary graphs generated after the removal of bridges
identified on auxiliary graph G’. We invoke connected components algorithm on F’ and rename
each alias vertex in F” to its original to get the biconnected components of G.

Analysis: We analyze the work done in Algorithm LCA-BiCC as follows. BFS requires O(n+m)
work, and finding the bridges in both original and auxiliary graph requires O(dr) per non-tree edge.
where dr is the depth of the BFS tree. So the total work done for all non-tree edges is O(mdr).
Rest of the steps such as constructing the auxiliary graph, finding the connected components (Step
VI) all can be done in time O(m + dr) time. Thus, the algorithm in the worst case takes O(mdr)
time in a sequential setting.

However, as observed in Table 2, the average number of traversals towards the root of the tree
required in identifying bridges is often much smaller than the depth of the BFS tree. This is the
reason why our algorithm is a nearly linear (in m and n) in time.

5 Implementation Details

In this section, we describe the implementation details of our algorithm. We also justify our choices
made during the implementation.
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We use the compact adjacency list representation(CSR), to represent the graph in the memory.
In this representation all the adjacency lists are packed together into a single large array. An array
E, is used to store the adjacency lists where the list for vertex i+1 immediately follows that of
vertex i for all vertices in G. An array V,, stores the starting indices of the corresponding adjacency
lists in E,. CSR representation helps in reducing the irregularity memory access. For a detailed
description, an interested reader can refer to [4].

We perform the following program optimizations while implementing Algorithm LCA-BiCC.
The performance of Algorithm LCA-BiCC is influenced by factors such as the depth of the BF'S tree
produced in Step I, the time taken to identify vertices in V., in Step II, and the size of the auxiliary
graph constructed in Step III. We use the heuristic based approach of selecting the largest degree
vertex as the source of the BFS to minimize the depth of the BFS spanning tree.

To minimize the time taken to identify the LCA vertices, we introduce the following optimization.
Consider a non-tree edge, e = (u,v) with both u and v performing a walk towards the root of the
tree. If both u and v encounter a tree edge that is marked by another non-tree edge, say f, then
it holds that LCA(e) = LCA(f). Therefore, we stop the walks originating from w and v. These
optimizations also reduce the size of the auxiliary graph.

We note that Lemmata 1, 2 and 3 can be modified suitably to work with any spanning tree.
Using any spanning tree in Algorithm 3 requires one to associate level numbers to vertices in the
tree. However, using a BFS tree allows to obtain the required level numbers as part of the BFS
traversal and no additional computation is required for the same. Therefore, we chose to present
the lemmata and the algorithms in terms of a BFS tree.

6 Experimental Results

6.1 Platform

We use an Intel i7 980x processor with 8 GB main memory as the experimental platform to test
our results. The 980x is based on the Intel Westmere micro-architecture. This processor is from
the Intel family with each core running at 3.4 GHz and with a thermal design power of 130 W. The
i7-980X has six cores and with active SMT (hyper-threading) and can handle twelve logical threads.
Beyond the memory, the i7-980x has a three level cache structure with an L1 cache per core of 64
KB split into two halves for instruction and data, an L2 cache per core of size 256 KB, and a shared
L3 cache of size 12 MB.

6.2 Datasets

We experiment on a variety of real-world and synthetic datasets. For simplicity purposes, directed
edges were considered undirected. Multiple edges and self loops were removed. The input graphs
are assumed to be a single connected component. If not they are made connected by adding explicit
edges. We experiment with real world graphs from the dataset of University of Florida Sparse Matrix
collection [2] and SNAP database [1]. These matrices can be converted to graphs naturally. A list of
the instances we consider are given in Table 1. Synthetic graphs were generated with the GTGraph
suite [3] using the default parameters.

6.3 Results on Real World Graphs

We study the results of our approach on the graphs mentioned in Table 1. We will demonstrate
both the relative and absolute speedup compared to prior work on the same platform and analysis
of our algorithm with respect to the graph computations involved in it.

Overall Improvement We consider the overall improvement obtained by our approach compared
to the best known implementation for finding the biconnected components on the same platform.
In Figure 4, the baseline we use for comparison is the best runtime achieved by either of Algorithm
BFS-BiCC and Algorithm Color-BiCC reported in [15].
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Graph name | Source | |V| |E| Diameter
web-google [11] 916,428 5,105,039 | 23
Webbase 22 1,000,005 | 3,105,536 | 27
Roadnet-PA 11 1,090,920 | 3,083,796 | 794
Roadnet-CA | [11 1971281 | 5,533,214 | 863
web-Stanford | [10 281,903 2,312,497 745
whedu 9.845.725 | 57,156,537 | 511

[11]
amazon [11] 262,111 1,234,877 | 29
Great-Britan | [11] 7,733,822 | 16,313,034 | 9340
[11]
[11]

11,950,757 | 25,423,206 | 48,126
3,774,768 | 16,518,948 | 29

asia-osm
Patents

Table 1: List of graphs that we use in our experiments.
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Figure 4: Comparing the overall performance improvement of our approach with respect to a baseline
implementation. The Y-axis shows the ratio of the time taken by the baseline to our implementation.

As can be observed from Figure 4, Algorithm LCA-BiCC outperforms the baseline by a factor of
2.45x on average. As claimed in [15], the best of the above two algorithms is an improvement over
the results of [7]. So, we expect that Algorithm LCA-BiCC too would outperform the results of [7].

Figure 5 shows the absolute times taken for all the three algorithms on the real world graphs.
It is visible from Figure 5 that the run time of Algorithm BFS-BiCC and Algorithm Color-BiCC
can vary hugely across instances and it is not possible to determine a-priori which algorithm might
perform better among the two as both are heavily dependent on the structure of the graph.

Understanding the Results One can analyze the improvement is in terms of the basic steps
in each of the algorithms under comparison. Algorithm BFS-BiCC [15] does, in principle, n BFS
computations. There are however several optimizations that Slota and Madduri [15] introduced to
ensure that several of these BFS computations do not visit all the vertices. On the other hand,
Algorithm LCA-BiCC performs only one BFS computation (Step I) and one connected components
computation (Step VI), apart from two calls to Algorithm Bridges (Steps II and V) to find the
bridges of a given graph. The rest of the computation is to construct the auxiliary graph G’. During
Algorithm Bridges, the end points of each non-tree edge march up the tree using the parent pointers.
As described before, the number of traversals for each end point of a non-tree edge is upper bounded
by the depth of the BFS tree produced in Step 1. The depth of a BFS tree is also related to the
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Figure 5: Figure shows the absolute runtime of Algorithm LCA-BiCC and Algorithms BFS-BiCC,
Algorithms Color-BiCC from [15] (in left-to-right order of bars) on graphs listed in Table 1. Note
that the Y-axis is in log-scale.

60

Step | m— "Step V

50 } Step Il mm Step VI
Steps Il + [V

40
30
20
10

0

Percentage Time(%)

web-Google
webbase
roadnet-pa
roadnet-ca
web-Stanford
wb-edu
amazon
great-britan
asia-osm
patents

Graph Instance

Figure 6: Profile of time taken across various steps of Algorithm LCA-BiCC.

diameter of the graph, and it is observed that most real-world graphs have a low diameter. The
diameter of the graphs used in our experiments is also shown in Table 1.

Further, we also computed the average number of traversals needed by each end point to locate
the LCA. The average number of traversals along with the depth of the BFS tree constructed in
Step I are listed in Table 2 for the graphs from Table 1. It can be noticed that the average number
of traversals needed is smaller than the depth of the BFS tree and is under 10 in all the graphs.
This small number of traversals on sparse graphs is what also helps in keeping the runtime of our
algorithm low.
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Figure 7: Figure shows the time taken to identify bridges in a graph G using our algorithm (Algo-
rithm 3 and the algorithm of Tarjan and Vishkin [19]).

We study the size of the auxiliary graph constructed in Step III of Algorithm LCA-BiCC. Since
an auxiliary graph is constructed for each 2-edge-connected component of G, we measure the sum
of the sizes of the auxiliary graphs constructed with respect to each 2-edge-connected component of
G. Tt is noted that the maximum increase in number of vertices at 25% and 20% occurred on the
graphs roadnet-CA and roadnet-PA respectively. For all the other graphs from Table 1, the number
of vertices increased by are under 5%. For each vertex added to the auxiliary graph, there are two
edges removed and three edges that are added to the auxiliary graph. Thus, the increase in the
number of edges is equal to the number of newly created vertices. In terms of relative increase, the
number of edges had a maximum increase on the above instances again, at 8% and 7% respectively,
and in all other instances from Table 1, the increase in the number of edges is under 3%. This shows
that the actual increase in the size of the auxiliary graph is rather marginal and does not affect the
performance of Algorithm LCA-BiCC in a significant manner.

Profiling and the Choice of the Source Vertex We finally show the time taken in each step of
Algorithm LCA-BiCC as a percentage of overall time. Such a study shows the relative cost of each
of the steps of the algorithm. The results of study are shown in Figure 6. Some of the improvement
of Algorithm LCA-BiCC can be attributed to the fact that finding the bridges of a graph is a much
easier task in a parallel setting. As shown in Figure 6, this step on the original graph G takes under
16% of the overall time on average, and takes under 20% on average on the auxiliary graph G'.
These are labeled as Steps II and V respectively in Figure 6.

Note that Tarjan and Vishkin [19] also outline an approach to identify the bridges, their algorithm
is usually more time consuming as it involves computation of functions low(v) and high(v) (as defined
in Section2.1). Using the two functions low and high, a tree edge in T from v — w is marked as a
bridge if and only if w < low(w) and high(w) < w + nd(w) — 1 where nd(w) refers to the number
of descendants for a vertex w. To illustrate the simplicity of our approach for identifying bridges on
sparse graphs, we consider some graphs from Table 1 and perform identification of bridges using our
approach (Algorithm 3) and also the approach of Tarjan and Vishkin [19]. The time taken for both
these approaches is plotted in Figure 7. As can be seen, our approach outperforms that of Tarjan
and Vishkin.

In practice we have observed that unlike BFS-BiCC and Color-BiCC our LCA-BiCC approach is
not heavily impacted by the choice of the source vertex while constructing the BFS spanning tree.
The difference in the run time of Algorithm LCA-BiCC when a vertex of the highest degree is chosen
as the source vertex versus an arbitrary source vertex is usually under 10% on the graphs from Table
1. On the other hand, as reported in [15], and also as witnessed in our experiments too, Algorithm
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BFS-BiCC from [15] is significantly affected by the choice of the source vertex for all graphs listed
in Table 1 and those considered in [15].

Graph name | %of LCA vertices | BFS depth | avg # LCA-traversals
web-google 3.31 12 1.09
Webbase 0.31 16 2.5
Roadnet-PA | 15.02 534 9.91
Roadnet-CA | 14.90 554 9.09
web-Stanford | 1.90 727 2.82
whb-edu 11.91 319 9.81
amazon 8.20 23 6.47
Great-Britan | 2.96 6841 7.55
asia-osm 2.93 38,793 4.93
Patents 1.97 17 3.91

Table 2: List of graphs along with the average number of traversals made per non-tree edge. The
column labeled “% of LCA vertices” indicates the number of vertices that are in Vi, as a percentage
of the total number of vertices.

6.4 Results on synthetic graphs

Figure 8 shows the speedup obtained by Algorithm LCA-BiCC on synthetic graphs. These graphs
were generated using GTGraph suite [3] with default parameters. In Figure 8, graph rand_pM_gM
refers to a random graph generated with p million vertices and ¢ million edges. We obtained an
average speedup of 2.53x with respect to the best of BFS-BiCC and Color-BiCC [15].
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Figure 8: Comparing the overall performance improvement of our approach with respect to best
of BFS-BiCC and Color-BiCC. The Y-axis shows the ratio of the time taken by the baseline to
LCA-BiCC algorithm.
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Figure 9: Speedup obtained by Algorithm LCA-BFS-BiCC over Algorithm LCA-BiCC and Algo-
rithm BFS-BiCC ([15]), for the graphs from Table 1.

7 Further Improvements

In this section we present a simple yet efficient optimization for Algorithm BFS-BiCC [15] for
identifying the biconnected components of graph G. Our improvements is based on two observations.
Firstly, we make use of the observation from Section 1.1 that identifying the bridges in a graph is
an efficient operation, especially in a parallel setting. Bridges also help in partitioning a graph into
its 2-edge-connected components that can be processed independently. Secondly, given a 2-edge-
connected graph, we use Lemma 1 to discard vertices that are certainly not articulation points and
work with a small subset of potential articulation points. We call the vertices that are certainly not
articulation points as non-essential vertices. Such a notation with respect to edges was also used by
Cong and Bader[7].

We use the above two observations to modify Algorithm BFS-BiCC from [15]. Unlike Algorithm
BFS-BiCC, we do not examine each vertex for its possibility to be an articulation point. The LCA-
BFS-BiCC approach is limited only to potential articulation points. Rest of the details are similar
to that of Algorithm BFS-BiCC. As can be seen from Table 2, since the percentage of LCA vertices
is small in most real-world graphs, we expect that our modifications to Algorithm BFS-BiCC would
result in an improvement.

Our algorithm, called Algorithm LCA-BFS-BiCC, is shown as Algorithm 4. Some of the steps
such as computing a BFS tree (Step I), finding the bridges of G (Step II) are identical to that of
Algorithm LCA-BiCC. In Step III, we limit the call to Procedure BFS-L described by Madduri et al.
[15, Algorithm 6] to only vertices in Vi, (G;) for each i. In Step III, once we identify the articulation
points of each G;, we use a step similar to that Step VI of Algorithm LCA-BiCC to identify the
biconnected components of G.

7.1 Experimental Results

We use the experimental platform as described above in Section 6. We compare the results of
LCA-BiCC algorithm with optimized BFS-BiCC approach on graphs given in Table 1.

In Figure 9, we show the improvement obtained by Algorithm LCA-BFS-BiCC compared to
Algorithm LCA-BiCC. On average, Algorithm LCA-BFS-BiCC is about 1.46x faster compared to
Algorithm LCA-BiCC. Figure 9 also shows the improvement obtained by Algorithm LCA-BFS-
BiCC over the BFS-BiCC algorithm of [15]. Central to the improvement obtained by Algorithm
LCA-BFS-BiCC is the idea that we have to perform BFS from only vertices in Vica.
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Algorithm 4 LCA-BFS-BICC(G)

1: procedure LCA-BFS-BICC(Graph G)

2 T+ BFS(G) /*Step I'*/

3 {G1,Gs,---,} = BRIDGES(G,T) /*Step II*/

4 for all G;, i =1,2,--- , in parallel do /*Step IIT*/

5: for all v € G; do

6 Articulation(v) = false; visited(v) = false

7 end for

8 for all u € Viea(G;) \ 7; do /* r; is the root of

9: the BFS tree of G; */

10: v+ P(u)

11 if Articulation(v) = false then

12: I + BFS-L(G, L, v, u, visited) /*BFS-L refers to [15, Algorithm 6]*/

13: if [ > L(v) then

14: Articulation(v) « true

15: end if

16: end if

17: end for

18: Check if r; is an articulation point

19: Identify the Biconnected Components of G; using the Articulation Points of G; /*Step
Iv*/

20: end for
21: end procedure

To understand the extent of improvement of Algorithm LCA-BFS-BiCC over Algorithm BFS-
BiCC, we note the following. From the column labeled “% LCA Vertices” of Table 2, we see that in
general, real-world graphs have a small percentage of vertex that are in Vi.,. So, we expect significant
performance gain for Algorithm LCA-BFS-BiCC. However, Figure 9 indicates the performance gain
of Algorithm LCA-BFS-BiCC does not match the corresponding expected gain. For instance, if a
graph has 10% of vertices in Vi,, one can expect a 10x improvement in the run time of Algorithm
LCA-BFS-BiCC compared to that of Algorithm BFS-BiCC of [15]. This is not the case in general
for the following reasons.

Algorithm BFS-BiCC introduces optimizations such as truncating the BFS-like traversals that
are deemed unnecessary, invalidating the vertices of an already established biconnected component,
and the like. Algorithm LCA-BFS-BiCC also benefits from these optimizations. However these
optimizations mean that in Algorithm BFS-BiCC, even though most BFS traversals are terminated
early on, there is still redundant work that is removed by using Algorithm LCA-BFS-BiCC. For
experimental purposes, when the above mentioned optimizations from BFS-BiCC are removed, we
do notice that the speedup achieved by Algorithm LCA-BFS-BiCC compared to that of Algorithm
BFS-BiCC is near the expected speedup.

Also in the BFS-BiCC approach, the choice of root vertex affects the runtime of the level-
truncated BFS. Since the percentage of LCA-vertices (from Table 2) are quite low for real world
graphs, it is observed during our empirical study that this choice would have minimum affect on the
overall runtime of LCA-BFS-BiCC.

8 Owur Approach for Dense Graphs

The algorithms described above might not work well for dense graphs mainly due to large volumes
of computation being involved in processing the non-tree edges. One of the possible approaches
is to convert a dense graph to a sparse graph by applying the Cong-Bader approach [7] described
in Section 2.2. Their algorithm removes edges that are non-essential during the computation of
biconnected components. The sparsified graph G' of G will have n vertices and at most 2n — 2
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edges ( as it contains n — 1 tree edges and at most n — 1 non-tree edges). It can be clearly observed
that for a given BFS spanning tree T', LCA vertices before and after the sparsification step remains
unchanged.

Let us define the Sparsity Quotient of a graph to be the ratio of number of edges to its vertices.
Empirically we noticed that when n > 1M and as the Sparsity Quotient of the graph approaches 110,
the Biconnected components computation gets benefited by applying this Cong-Bader sparsification
technique. The algorithm is described below.

Algorithm 5 SpaRrSIFY-LCA-BFS-BICC(G)

1. procedure SPARSIFY-LCA-BFS-BICC(Graph G)

2: T + BFS(G) /*Phase I*/

5 F+« BFS(G\T)

4 G'« (FUT)

5: Biconnected_Components = LCA-BFS-BICC(G!) /*Phase IT*/
6:

7

8

9:

for all e = (w,w)e G\ (FUT) do /*Phase IIT*/
label e to be in Biconnected Component Containing w and p(w)
end for
end procedure

In Phase I, sparsification is performed on the input graph. We initially filter out the non-essential
edges as described in the Section 2.2. This pruning step reduces the LCA computation from m—mn-+1
edges to at most n— 1 edges. On this sparsified graph, in Phase II, we invoke the Algorithm 4 (from
the Section 7) which perform MultiBfs only on LCA vertices. Note that we do not require an
additional construction of a spanning tree and can use the existing spanning tree constructed in the
Phase I while invoking Algorithm 4. Finally in Phase III, for each non tree edge w v, we assign its
label to the biconnected component containing the tree edge from w to p(w) or from v to p(v).

8.1 Experimental Results

We apply our approach on wide range of synthetic graphs ranging from 110 M edges to 130 M
edges. These are generated by fixing the required structure of the graph. For instance if We need k
biconnected components, we fix a value of n and generate k values, ni, no, ..., ng such that Z i+
no+...+n, = n. We then generate k graphs according to Erdos-Reyni graph model [5]. The average
degree of each graph is set to p;, which is calculated based on the following equation from [13]. At
this value of p;, it is shown in [13] that the resulting graph will be a dense biconnected component
with high probability.

pi = ((logny) + 5 (log logny) +a+ o)) 1)
i n;

Here « is some constant, 5 denotes the connectivity of the component and n; is the number of
vertices in the subgraph. Since we are dealing with biconnected components we set the value of 3 to
be 2. We then connect the k graphs so that the resulting graph is connected and has k£ biconnected
components.

We compare our results of Algorithm 5 to Algorithm 4. It can be observed from Figure 10 that
our approach on average is 1.41x faster over Algorithm 4 for dense graphs. From Figure 11 it can
be observed that majority of time is consumed on the two BFS operations performed for sparsifying
the graph. We can say that this improvement for dense graphs is remarkable, given the fact that
the sequential version has a linear time complexity involving very small hidden constants.

9 Conclusions

In this paper, we have introduced a novel shared memory parallel algorithm for identifying the
biconnected components. Our experimental results on wide variety of real-world graphs and syn-
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Figure 10: Speedup obtained by Algorithm Sparsified-LCA-BFS-BiCC over Algorithm LCA-BFS-
BiCC.
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Figure 11: Profile of time taken across various steps of Algorithm 5. Phase I (T) refers to the
percentage of time consumed for constructing the spanning tree. Phase I (F) refers to the percentage
of time consumed for constructing the spanning forest and the sparsified graph.

thetic graphs indicate that our algorithm offers a considerable speedup over the current best known
implementation for identifying the biconnected components on identical platforms.
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