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Abstract

Multi-tiered transactional web applications are frequently used in IT enterprise based sys-
tems. Due to their inherent distributed nature, pre-deployment testing for high-availability and
varying concurrency are important for post-deployment performance. Accurate performance
modeling of such applications can help estimate values for future deployment variations as well
as validate experimental results. In order to theoretically model performance of multi-tiered
applications, we use queuing networks and Mean Value Analysis (MVA) models. While MVA
has been shown to work well with closed queuing networks, there are particular limitations in
cases where the service demands vary with concurrency. This variation of service demands for
various resources (CPU, Disk, Network) is demonstrated through multiple experiments. This is
further contrived by the use of multi-server queues in multi-core CPUs, that are not tradition-
ally captured in MVA. We compare performance of a multi-server MVA model alongside actual
performance testing measurements and demonstrate this deviation. Using spline interpolation
of collected service demands, we show that a modified version of the MVA algorithm (called
MVASD) that accepts an array of service demands, can provide superior estimates of maximum
throughput and response time. Results are demonstrated over multi-tier vehicle insurance reg-
istration and e-commerce web applications. The mean deviations of predicted throughput and
response time are shown to be less the 3% and 9%, respectively. Additionally, we analyze the
effect of spline interpolation of service demands as a function of throughput on the prediction
results. Using Chebyshev Nodes, the tradeoff between the number of test points and the spline
interpolation/prediction accuracy is also studied.

Keywords: Performance Modeling, Queuing Networks, Mean Value Analysis, Multi-tier Appli-
cations, Spline Interpolation, Chebyshev Nodes.
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1 Introduction
Web based applications deployed by most IT enterprises make use of multi-tiered architectures. Each
tier provides a particular functionality required for end-to-end transactions. Most web applications
consist of a front end (PHP/Python/Perl) Web server for HTTP request processing, a middle-tier
(Apache) Application server the implements the enterprise application functionality and a back
end (SQL) Database server that stores user and transaction data. The advantages of employing
multi-tiered architectures include: scalability – each tier can be scaled in order to handle superior
loads; performance – due to data caching at one tier, load is reduced on other tiers leading to better
performance.

Once such a multi-tiered web application has been developed and the software design and imple-
mentation frozen, performance testing is performed before deployment. Some of the recent crashes
of high-concurrency based web applications (eg. “ObamaCare” website1 crash [1]) highlight the need
for accurate pre-deployment analysis of loads and bottlenecks. For realistic test outputs, the hard-
ware and software platforms should be configured close to production environments. The workload
is simulated according to expected concurrency and the response time and throughput values are
examined. There are several industry level load testing software developed such as HP’s Loadrun-
ner [2] and IBM’s Rational Performance Tester [3]. Tools for performance prediction using fewer
load testing samples such as Perfext [4] and TeamQuest [5] have also been developed. This is then
reflected in Service Level Agreements (SLAs) for the application. For instance, with 100 users con-
currently accessing, the response time should be less than 1 second per page; the maximum CPU
utilization with 500 concurrent users should be less than 50%.

Accurate theoretical modeling of performance under varying load is a useful basis for comparison
with measured load testing data. Moreover, it can also help predict future performance indexes
under changes in hardware or assumptions on concurrency. By modeling multi-tiered systems with
Queuing Networks, we develop an analytical model for performance analysis. In our work, we
make use of Mean Value Analysis (MVA) to analyze these closed queuing networks. MVA is a
recursive solution technique to predict performance of closed networks at higher concurrency [6].
While MVA has been applied with considerable success in cases with consistent service demands,
we demonstrate that varying service demands (as a function of concurrency) produce considerable
deviations in predicted outputs. Varying service demands are pathological in nature for multi-tier
systems where the utilization of the CPU|Disk|Network resources of multi-tiered applications do
not scale proportionally with higher concurrency. This is further contrived by the fact that multi-
processor CPUs make use of multi-server queues rather than the single-server queues used in MVA.
Inclusion of this variation in service demands into a multi-server variant MVA algorithm, in order
to reduce predicted deviations, is the principal problem tackled in this paper.

Analysis of changes in service demand has had limited study within the performance modeling
community. In most cases, it is either considered constant or averaged out over measurements
taken with varying workloads. We propose a solution using an array of service demand collected
over varying concurrent loads as an input, called MVASD. By interpolating service demands using
cubic splines [7], we demonstrate prediction of throughput and response time at higher workloads.
This is combined with the multi-server queuing model for MVA proposed in [8]. By updating the
slope of estimated throughput and response time values as a function of the service demand slope,
predicted results are shown to be close to measured load testing outputs. MVASD is analyzed over
vehicle insurance (VINS) and e-commerce (JPetStore) applications that are deployed over multi-tier
architectures. Predicted throughput values show less than 3% mean deviation and the cycle times
show less than 9% mean deviation. Additional analysis of modeling service demand interpolations
using throughput is also studied. This model may be useful for open systems where throughput
can be modified much easier rather than increasing the concurrency. Using Chebyshev Nodes, the
tradeoff between the number of test points and interpolation/prediction accuracy is also studied.
This can allow test designers to choose accurate sample points for load testing that would lead to
superior interpolation of service demands.

Core contributions of this paper are:
1http://www.healtcare.gov
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1. Demonstrating limitations of multi-server MVA with varying application service demands with
workloads.

2. Incorporating spline interpolated service demands to generate a new algorithm, MVASD, that
accepts an array of service demands.

3. Applying MVASD to multi-tiered web applications for superior performance prediction with
increasing workloads.

4. Analyzing service demands interpolated vs. throughput and concurrency for various samples.

5. Examining the number of samples through Chebyshev Nodes, that can retain accuracy of
prediction even with fewer input sample service demands.

The rest of the paper is organized as follows: Section 2 presents an overview of the related work in
this area. In Section 3, we introduce operational analysis and laws required for performance modeling
of multi-tiered systems. Performance testing, monitoring utilization and a brief description of web
applications of interest are described in Section 4. In Section 5, we study traditional single-server
and multi-server MVA models; the limitations of these models are demonstrated. The upgraded
MVASD model which can accept an array of service demands is introduced in Section 6 along with
detailed analysis of prediction accuracy. The analysis of spline interpolation and models for service
demands in presented in Section 7. The tradeoff between the accuracy of prediction and the number
of input samples is studied in Section 8. This is followed by conclusions in Section 9.

2 Related Work
Performance load testing [9] has typically been employed post-integration by a dedicated team in
most enterprises. By utilizing tools such as HP’s Loadrunner [2] and IBM’s Rational Performance
Tester [3], load and stress tests of applications are run in order to examine performance under varying
workloads. Open source alternatives such as The Grinder [10] allow testing for large concurrency
without added licensing costs.

Analytical models such as queuing networks have been employed by Urgaonkar et al. in [11] to
study multi-tiered web applications. By accurately modeling the cache performance in the queuing
network model, they generate more realistic load testing outputs. Impediments to accurate analysis
in multi-tiered applications are analyzed in [12]. High-level modeling of 3-tiered web services as
queuing networks and subsequent performance analysis is performed in [13]. These include modeling
system activity under heavy loads, multiprocessor effects and dependent database queries. The
analysis of large-scale J2EE applications in terms of queuing networks and their implications for
throughput and response time predictions has been studied in [14]. The demonstration of increase
in prediction errors with higher concurrent load is also shown. In [4], Dattagupta et al. makes use
of curve fitting to extrapolate measured throughput and response time values in order to predict
values at higher concurrencies. Using linear regression for linearly increasing throughput and sigmoid
curves for saturation, the extrapolation technique is shown to work well against measured values.
The predictor provided by Teamquest [5] provides options to substitute or improve server capacity
to improve performance at higher loads. While think times are traditionally set as constants during
tests, these have been modeled with realistic user wait time stochastic values in [15].

Mean value analysis (MVA) [6] has been proposed as a recursive technique to estimate perfor-
mance with incremental increase of loads in closed networks. However, it requires accurate mea-
surements of service demands as inputs to the algorithm. In [16], Luthi et al. propose an extension
that can incorporate histograms of values to make up for variabilities in workloads. Rather than
using single mean values as inputs, linear and interval splitting techniques are incorporated within
the algorithm to generate histograms of outputs. Tools such as [17] allow users to simulate exact
and approximate versions of MVA under various constraints. While MVA analysis typically con-
sider single server queuing models, specially for tightly coupled multi-core processors, this has to be
modified. Upgrading the approximate MVA algorithm [18] with multi-server factors is studied in
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[19] and [20]. A load-dependent array of service demands has been proposed and implemented in to
tools such as JMT [17]. However, our contribution lies in the context of web applications running
on multi-server queues, and further providing an exact MVA algorithm around it.

Modeling service demands to explore unknown intermediate values, using non-linear constrained
optimization, is studied in [21]. In [22], queue size and Gibbs sampling techniques are utilized to
estimate service demands. However, utilizing the measured values to augment prediction techniques
has not been analyzed. In our work, we begin with analysis of utilization values with varying
concurrent loads. While research has traditionally gone into analysis of workload in a single tier
(for instance, web servers in [23]), we study an end-to-end model that incorporates multiple tiers
of software architecture. By making use of the service demand law [6], the service demands are
extracted for CPU|Disk|Network utilization of various servers in our analysis. The exact MVA
model is also upgraded to handle multi-server queues as proposed in [8]. Keeping this as inputs to the
mean value analysis, we demonstrate that improved prediction of performance is possible compared
to traditional MVA models. The new MVASD technique is applied to two web applications and is
shown to predict throughput and response times within 3% and 9% deviation, respectively.

A closely related work is [24], where the MAQ-PRO process is proposed that incorporate an-
alytical modeling to multi-tiered system performance analysis. A modified version of the MVA is
proposed that handles errors in MVA inputs by incorporating an “overall service demand” as a func-
tion of utilization. Further, MAQ-PRO utilizes an approximation of multi-server MVA [19], which
affects prediction accuracy at higher concurrency. In our work, we consider throughput and con-
currency to be the input metrics affecting service demand, rather than utilization. These collected
service demands are interpolated via splines (as a function of concurrency|throughput) in our model.
While Layered Queuing Networks (LQN) have been employed for accurate performance modeling of
multi-tiered web applications in [25][26], it does not handle such variations in service demands. We
rely on exact MVA and concentrate on the effect of service demands on the throughput and response
times predicted. Similarly, the use of software bottlenecks [27] such as synchronization locks and
connection pools have not been considered in our model. It is assumed that an increase in hardware
resources results in a scale-up in application performance.

3 Operational Analysis
We specify notations used in the paper in Table 1 and it may be used as a look-up by the reader.

Vi Average number of times customer visits resource i
Si Mean service time per customer at resource i
Ui Utilization of resource i
Xi Throughput of resource i
X Throughput of the system
Di Service demand of resource i
Dmax Maximum Service demand across all resources
N Average number of customers in the system
R Average response time of the system
Z Mean think time of a terminal user
R + Z Mean cycle time of the system
Qi Average number of jobs in queue at resource i
Ci Number of servers at queuing station i
pi(j) Marginal queue size probability of server j in station i
Fi Multi-server queue response time correction factor
SSn

i Array of service demands generated for station i with increasing concurrency levels n
xk Chebyshev Node indexes, with k test points generated in the interval range [a, b]

Table 1: Notations for Performance Modeling.
In our operational analysis, we consider closed queuing networks with a single class of cus-

tomers. Here “resources” refer to queuing centers in the system under test that may be hardware
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(CPU|Disk|Network) or software (locks, connection pools) based. Fundamental laws applicable to
queuing networks have been proposed using the operational metrics in Table 1. We briefly review
them; an interested reader is referred to [28] and [6] for further details.

• Utilization Law: Utilization is the fraction of time the resource is busy. Devices with high
utilization cause bottlenecks.

Ui = Xi × Si (1)

• Forced Flow Law: This states that the flows (throughputs) in the system should be propor-
tional.

Xi = Vi ×X (2)

• Service Demand Law: Total average service time required by a customer at resource i,
denoted Di.

Di = Vi × Si = Ui

X (3)

• Little’s Law: A powerful law stated in [29] that relates the number of users in a system with
throughput and response times. If there are N users in the system, each with think times Z
(time waiting between interactions with the system) and the software application processes at
the throughput rate X producing a wait time R, the following relationship applies:

N = X(R + Z) (4)

• Bottleneck Law: If the maximum demand across all resources is denoted as Dmax =
maxi{Di}, we specify:

X ≤ 1
Dmax

(5)

Substituting this into eq. 4, we get bounds on minimum response time Rmin.

Rmin ≥ NDmax − Z (6)

We make use of the service demand law and Little’s law in deriving service demands required in
proceeding sections.

4 Performance Testing
Performance load testing of a web application [9] consists of multiple steps: requirements gathering,
script generation, hardware-software test environment setup, test firing, monitoring and analysis.
There are some industry standard protocols to be followed such as setting the testing environment
within 50% of the deployment environment; realistic think times; long enough test runs to capture
steady states; sufficient datapools of users to prevent caching behavior. We briefly examine some of
the aspects in our experimental setup.

4.1 The Grinder Load Tests
For our work we make use of The Grinder [10]: a Java load testing framework capable of running
distributed tests using many load injector machines. In The Grinder, worker processes are deployed
on individual machines (agents); each of these worker processes can deploy worker threads that
simulate concurrent users. The number of simulated users is equal to number of worker threads ×
number of worker processes × number of agents. Scripts written in Jython or Clojure are controlled
during the run using The Grinder properties file with the following typical parameters2:

2http://grinder.sourceforge.net/g3/properties.html
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grinder.script # File name of the Jython script to run
grinder.processes # Number of worker processes each agent should start
grinder.threads # Number of worker threads each worker process should start
grinder.runs # Number of runs each worker process will perform
grinder.initialSleepTime # Maximum time that each thread waits before starting
grinder.sleepTimeVariation # Varies the sleep times according to a Normal distribution

# with specified variance
grinder.duration # Maximum length of time that each worker process should run
grinder.processIncrement # Ramp up the number of worker processes every

# grinder.processesIncrementInterval
grinder.processIncrementInterval # Interval at which the agent starts new worker processes

Where, grinder.threads and grinder.processes control the number of virtual users generated
by each agent; these virtual users are run either for a particular duration grinder.duration or for
a number of iterations grinder.runs. Additional parameters of interest are the time taken to start
each thread grinder.initialSleepTime and the time to start each process grinder.processIncrementInterval.
This allows a gradual “ramp up” of injected load into the system. In general, we study in steady
state performance analysis of the system. Fig. 1 shows The Grinder output of a test over time
using the Grinder Analyzer tool3; we notice transient behaviour initially which may be attributed
to “ramp up” periods (grinder.processIncrementInterval) and overheads due to thread creation
(grinder.initialSleepTime). So, the tests are run for sufficiently long time (≈10-15 minutes) in
order to remove such transient behavior and provide stable mean values. The output of The Grinder
load test provides the throughput, measured as number of pages served per second by the application
and response times, measured as the mean number of seconds taken to load a page, with respect to
the number of concurrent users.

Figure 1: The Grinder test output with respect to length of tests.

4.2 Monitoring Utilization
An important aspect to monitor in load tests are utilization levels of CPU|Disk|Network among
servers. As we consider LAMP based web applications, the Linux based load injecting/web/application/database
servers are monitored for the following metrics:

3http://track.sourceforge.net/
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• CPU Usage: The vmstat command reports virtual memory statistics regarding process, virtual
memory, disk, trap, and CPU activity.

• Disk Usage: The iostat iteratively reports terminal, disk, and tape I/O activity.

• Network Usage: netstat displays the contents of network-related data structures in various
formats, depending on the specified options. We make use of a central network switch and
measure the data packets transmitted (Tx) and received (Rx) over the network. Over a mon-
itored period t, assuming a 1 GBps network connection between servers, the utilization is
calculated as:

Util.% = # packets Tx|Rx over t× packet size
t× network bandwidth × 100 (7)

In this work, we treat memory usage as an orthogonal metric that can be increased sufficiently as
a function of CPU utilization, to prevent it becoming a bottleneck. Also note that we include load
injecting servers, that are typically outside the system of interest, in our analysis model. This is to
study all aspects of service demands that contribute to end-to-end response times. Most load tests
monitor the load generating server to prevent it from becoming the bottleneck in the analysis.

4.3 Applications under Test
For our tests, we make use of two benchmarking applications:

Vehicle Insurance Application (VINS) is a web application developed in house at the Performance
Engineering Research Center, Tata Consultancy Services for the registration of vehicle insur-
ance. The VINS application consists of four workflows:

1. Registration - The customer is able to register his/her personal and vehicle details for
insurance.

2. New Policy - A new policy is generated with respect to a registered vehicle.
3. Renew Policy - A policy can be renewed after it expires; the current value, sum and

premium is generated based on a formula.
4. Read Policy Details - The customer can view his/her personal, vehicle and policy details.

In our work, we concentrate on the Renew Policy workflow of the VINS application which
consists of 7 individual pages included in each performance test. In order to generate large
amount of virtual data need to be loaded in databases for VINS, an in house data generator
is used: it generates 10 GB (13,000,000 customers) of data within 50 minutes. Typically, this
is a Disk heavy application.

JPetStore [30] is an open source version of Sun’s Pet Store application that has been routinely used
for performance benchmarking. It can be deployed on a multi-tiered architecture using Apache
web/application front-end and an SQL back-end. This e-commerce application for buying pets
has multiple pages in its workflow, where customers may login, browse categories (birds, fishes,
reptiles, cats, dogs), choose pets, update them to the cart and checkout payments. For our
study, we populate 2, 000, 000 items into the database for viewing and selection by customers.
Typically this is a CPU heavy application.

5 Mean Value Analysis
In order to model the load testing scenario as a closed queuing network, we make use of Fig.
2. Each of the load generating, web/application and database servers have individual queues for
CPU|Disk|Network as described in Section 4 and are modeled to be product-form [6]. The think
time adds delay in between successive calls to the servers from populated concurrent users. Though
load testing servers are typically not a part of the environment under test, we include utilization of
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these servers in order to analyze end-to-end service demands during load tests. Note that we only
consider hardware resources in our modeling. Software bottlenecks [27] such as those caused by
synchronization locks or limited connection pools within the application are assumed to be tuned
prior to performance analysis.

Load Injecting Server

Multi-core
    CPU

Disk Network Rx Network Tx

Web/Application Server

Multi-core
    CPU

Disk Network Rx Network TxThink
Time

Database Server

Multi-core
    CPU

Disk Network Rx Network Tx

Figure 2: Queuing Network Model for Performance Testing.

5.1 Single-Server Exact MVA
Mean value analysis (MVA) [6] has been applied with considerable success in the case of closed
queuing networks in order to predict performance at higher work loads. We make use of single class
models wherein the customers are assumed to be indistinguishable from one another. The exact
MVA Algorithm 1 starts with an empty network; it then increases the number of customers by 1 at
each iteration until there are the required number (N) of customers in the system. For each queuing
station k = 1, ...,K, the waiting time Rk is computed using the static input service demands Sk and
the number of jobs in the queue Qk as:

Rk = Sk(1 + Qk) (8)

The system throughput is then computed using the sum of waiting times at each node and Little’s
law (eq. 4). Finally, Little’s law is applied to each queue to compute the updated mean queue
lengths for k = 1, ...,K. Another popular implementation is Schweitzer’s approximation of MVA
[18] estimates the average number of jobs at node k to be:

QN−1
k ≈ N − 1

N
Qn

k (9)

which produces faster results compared to exact MVA, especially at higher concurrency N .

5.2 Multi-Server Exact MVA
Both exact and approximate MVA consider queues with a single server – this requires modification
in case of multi-server queues, such as those found in tightly coupled multi-core CPU processors.
Heuristically, this has been done by normalizing the service demand by the number of CPU cores
employed; however, this approximation can lead to modeling errors, especially at higher concurrency
[6].

In the work done by [19] and [20], a correction factor is proposed that incorporates the number
of servers Ck at each queuing station k. These are incorporated into Schweitzer’s approximation
of MVA [18] to model multi-server queues. However, as this is based on the approximate version
of MVA, errors in prediction compounded with variation in service demands can lead to inaccurate
outputs. As we intend to use the exact version of MVA, we make use of the correction factor
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Algorithm 1: Exact Mean Value Analysis (MVA) Algorithm [6].
Input: Set of queuing stations k ∈ K; Corresponding Service demands Sk and Visit counts

Vk; Number of concurrent users N ; Think time Z;
Output: Throughput Xn with increasing concurrency n ∈ N ; Response time Rn with in-

creasing concurrency n ∈ N ;
for k ← 1 to K do

Initialize queue at each station: Qk ← 0
for n← 1 to N do

for k ← 1 to K do
Response time at each station: Rk = Sk(1 + Qk)

Total response times using visit counts: Rn =
∑K

k=1 VkRk

Throughput with Little’s Law: Xn = n

Rn + Z
for k ← 1 to K do

Update queues at each station: Qk = XnVkRk

return Xn, Rn

proposed in [8]:

Rk = Sk

Ck
(1 + Qk +

Ck∑
j=1

(Ck − j)pk(j)) (10)

where pk(j) represents the marginal queue size probabilities that are recursively updated for each
multi-server queue, Ck represents the number of servers in the multi-server queue. Marginal proba-
bilities give the probability values of random variables in the subset without reference to probability
values of other variables. These values may be seen to estimate the probability of a particular core
being busy with increasing concurrency. As an example, for a 4-core CPU in Fig. 3, the updated
marginal-probabilities of a core being busy are examined as a function of concurrency. At higher
concurrency, these probability values converge to 0.25 (1/max. no. of cores).

Figure 3: Marginal Probability of a CPU Core being busy with increasing Concurrency.

This is incorporated with exact MVA in Algorithm 2. Notice that for Ck = 1 (single-server),
this reduces to eq. 8. The update equation estimates the utilization of each server (cores in CPU
context) and updates the probability of the queue being empty. For the rest of the paper, we refer
to this algorithm as exact multi-server MVA.
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Algorithm 2: Exact Mean Value Analysis (MVA) Algorithm with Multi-Server Queues [8].
Input: Set of queuing stations k ∈ K each with number of servers Ck; Corresponding Service

demands Sk, Visit counts Vk; Number of concurrent users N ; Think time Z;
Output: Throughput Xn with increasing concurrency n ∈ N ; Response time Rn with in-

creasing concurrency n ∈ N ;
for k ← 1 to K do

Initialize queue at each station: Qk ← 0
Initialize multi-server marginal probabilities:
pk(1)← 1
for j ← 2 to Ck do

pk(j)← 0

for n← 1 to N do
for k ← 1 to K do

Multi-server queue correction factor: Fk ←
∑Ck

j=1 (Ck − j)pk(j)
Response time at each station: Rk ← Sk

Ck
(1 + Qk + Fk)

Total response times using visit counts: Rn ←
∑K

k=1 VkRk

Throughput with Little’s Law: Xn ← n

Rn + Z
for k ← 1 to K do

Update queues at each station: Qk ← XnVkRk

Update multi-server marginal probabilities:
pk(1)← 1− 1

Ck
(XnSk +

∑Ck

j=2 pk(j))
for j ← 2 to Ck do

pk(j)← 1
j XnSkpk(j − 1)

return Xn, Rn

5.3 Performance Modeling with Multi-Server MVA
In order to compare the predicted output of the MVA algorithm and the actual performance of
the VINS application, a set of load tests were performed to collect response time and throughput
values at varying levels of concurrency. The application was deployed on 16-core CPU machines,
10 GB of data on the database, with datapool of 200, 000 users and think times of 1 second. The
Grinder tests were run with concurrency varying from 1 to 1500 users (varying number of processes
and threads) for 100 runs on the Renew Policy workflow (7 pages). In Table 2, the utilization
values are used in conjunction with the service demand law (eq. 3) to extract the service demands
at individual queuing stations. We assume that the mean throughput levels X can be estimated
either through historic access logs or monitoring visit counts at CPU|Disk|Network access points. As
seen, with increased concurrency, the load injecting server disk and the database server disk reach
near-saturation (underlined). The database server disk utilization value is ≈ 93% compared to CPU
utilization of about ≈ 35%. As the maximum capacity of the Disk resource has been reached, it is
the bottleneck resource which limits the server’s ability to handle any increase in workload. Hence,
we can also say that the VINS application is a database Disk intensive application with the given
hardware configuration.

Collected throughput and service demand values are utilized as inputs to Algorithm 2. In Fig.
4 compared to the measured values from The Grinder, there are significant deviations in outputs
provided by Algorithm 2. Here, the label MVA i refers to outputs produced by the algorithm
when input with service demands measured at concurrency level i (for instance, MVA 203 refers to
inputting service demands S203

k collected with concurrency 203 as input to Algorithm 2). Note that
even for single user tests, the sum of collected service demands do not exactly add up to the response
time provided in The Grinder. This further demonstrates the overheads that might occur internally
at the CPU, disk or network level, which complicates accurate modeling of these applications.
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Figure 4: Throughput and Response Time model outputs generated by Algorithm 2 in the VINS
application.

Users Load Server Application Server Database Server
CPU Disk Net-Tx Net-Rx CPU Disk Net-Tx Net-Rx CPU Disk Net-Tx Net-Rx

1 0.648 0.032 0.004 0.003 0.278 0.052 0.0024 0.0038 0.75 0.44 0.0014 0.0009
20 0.95 0.565 0.058 0.032 0.37 0.015 0.043 0.077 3.47 8.22 0.026 0.021

105 2.14 2.74 0.281 0.131 0.69 0.015 0.226 0.405 8.92 19.92 0.136 0.109
203 3.46 11.365 0.545 0.256 1.32 0.095 0.438 0.783 13.15 25.9 0.263 0.21
504 7.95 35.13 1.38 0.639 2 1.08 0.956 1.783 19.625 36.43 0.455 0.372

1001 15.55 71.1 2.75 1.29 3.55 0.024 1.692 3.241 36.23 71.9 0.568 0.485
1204 17.485 74.85 3.29 1.56 4.12 0.03 1.983 3.807 33.67 67.61 0.598 0.518
1503 21.566 88.76 4.08 1.95 5.66 0.037 2.33 4.12 34.98 92.75 0.543 0.65

Table 2: Utilization % observed during Load Testing of the VINS application.

As service demands Sk are the key inputs needed for MVA, we plotted the observed service
demands for the database server in Fig. 5. Due to variations in individual service demands at
changing concurrency, the outputs produced at each run of Algorithm 2 varies considerably. While
there are improvements when service demands are taken at higher concurrency levels, it would
mean testing until near-saturation to generate inputs for the algorithm. As this model fails to meet
expected outputs, we explore the possibility of using an extended version of MVA that accepts an
interpolated array of service demands in the next section.

6 MVASD: Multi-Server MVA with Varying Service De-
mands

In case of variable service demands that change as a function of concurrent users N , incorporating
an array of service demands into the MVA in crucial. Indeed, in papers such as [24] and [16], this
issue has been identified with heuristic models. We propose Algorithm 3 that incorporates service
demands collected at unique points: this algorithm is referred to as MVASD. Typically this can be
done using statistical analysis of log access files to check utilization levels of CPU|Disk|Network at
various queuing nodes. While the measured service demands {Si1

k , ...,S
iM

k } is measured at only M
points, these are interpolated in order to generate values over each interval n. The set of service
demands SSn

k (using Service Demand Law, eq. 3), represent the changes in demand with increasing
concurrency. The updated response time iterative update model is:

Rk = SSn
k

Ck
(1 + Qk +

Ck∑
j=1

(Ck − j)pk(j)) (11)

The changes in Algorithm 3 with respect to Algorithm 2 have been underlined. For the function
h used to generate the array of service demands in Algorithm 3, we interpolate using splines. In
spline interpolation [7], if (xi, yi) are modeled such that x1, x2, ..., xn are a sequence of observations
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Figure 5: Service Demands for the VINS Database Server.

with the relation yi = h(xi). The smoothing spline estimate ĥ of the function h is defined to be the
minimizer:

n∑
i=1

(yi − ĥ(xi))2 + λ

∫ xn

x1

ĥ′′(x)2 dx (12)

where, λ ≥ 0 is a smoothing parameter, controlling the trade-off between fidelity to the data and
roughness of the function estimate. Compared to linear interpolation methods, spline interpolation
produces lower error at the cost of higher computational complexity [7].

Specifically, we make use of the interp() function in Scilab [31] that generates a continuous and
derivable piece-wise function h(X) defined over [x1, xn]. It consists of a set of cubic polynomials, each
one qm(X) being defined on [xm, xm+1] and connected in values and slopes to both its neighbours.
Thus, over [xm, xm+1] we have h(X) = qm(X) and h(xi) = yi. The interp() function evaluates
h(X) and subsequent derivatives h′(X), h′′(X), h′′′(X):

yqi = h(xqi); yq1
i = h′(xqi);

yq2
i = h′′(xqi); yq3

i = h′′′(xqi)
(13)

Further, we specify that outside the sampled [x1, xn], the extrapolation model follows:

xqi < x1 ⇒ yqi = y1
xqi > xn ⇒ yqi = yn

(14)

which pegs the boundary interpolated values to output extrapolation. The function h captures the
variance in service demand generated with increasing concurrency.

6.1 Performance Modeling with MVASD
We continue the prediction model for the VINS application as specified in Section 5.3, where multi-
server MVA does not predict accurately (Fig. 4). We input the generated array of service demands
(using Table 2) into Algorithm 3. As shown in Fig. 6, when the array of collected service demands
were input to MVASD, the outputs of spline interpolated service demand produce predictions close
to measured values. The outputs are clearly superior to those developed with Algorithm 2 (chosen
with varying concurrency MVA i), as we control the slope of the throughput curves, using the
interpolated service demands.

In order to re-test the performance of the algorithms, the JPetStore application [30], consisting
of 14 pages was used. For this, 16-core CPU machines, 1 GB initial data in the data server, datapool
125,000 users and think time of 1 second were employed. Table 3 shows the utilization percentages
observed with increasing concurrency. Due to the large size of entries (2,000,000) generated for the
load test, we notice saturation of CPU and disk with ≈ 140 users (underlined).

Fig. 7 demonstrates the outputs of Algorithms 2 and MVASD (3) on the JPetStore application.
As expected, MVASD performs well and is even able to pick up the deviation in throughput between
140 and 168 users. The exact multi-server MVA does not offer this level of precision even with
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Algorithm 3: Exact Mean Value Analysis Algorithm with Multi-Server Queues, Varying Service
Demands (MVASD).

Input: Set of queuing stations k ∈ K each with number of servers Ck; Corresponding Ser-
vice demands Sk, Visit counts Vk; Number of concurrent users N ; Think time Z;
Interpolation function h;

Output: Throughput Xn with increasing concurrency n ∈ N ; Response time Rn with in-
creasing concurrency n ∈ N ;

for k ← 1 to K do
Initialize queue at each station: Qk ← 0
Initialize multi-server marginal probabilities:
pk(1)← 1
for j ← 2 to Ck do

pk(j)← 0

for n← 1 to N do
for k ← 1 to K do

Multi-server queue correction factor: Fk ←
∑Ck

j=1 (Ck − j)pk(j)
Array of Abscissa at which service demands have been collected: ak ← {i1, ..., iM}
Array of Service demands for each station: bk ← {Si1

k , ...,S
iM

k }
Interpolated Service demands generated with interval n: SSn

k ← h(ak, bk, n)
Response time at each station: Rk ← SSn

k

Ck
(1 + Qk + Fk)

Total response times using visit counts: Rn ←
∑K

k=1 VkRk

Throughput with Little’s Law: Xn ← n

Rn + Z
for k ← 1 to K do

Update queues at each station: Qk ← XnVkRk

Update multi-server marginal probabilities:
pk(1)← 1− 1

Ck
(XnSSn

k +
∑Ck

j=2 pk(j))
for j ← 2 to Ck do

pk(j)← 1
j XnSSn

k pk(j − 1)

return Xn, Rn

inputs of service demands collected at higher concurrency. Variations are observed in the outputs
of MVA28, MVA70, MVA140 and MVA210 – demonstration the need for accurate service demand
inputs. Depending on the concurrency level at which service demands are collected, Algorithm 2
varies in efficacy of outputs.

In Fig. 8, we compare performance of exact MVA single-server [6] using normalized service
demands for multi-server CPUs (dividing the service demand by the number of CPU cores). This
is a version of exact MVA (eq. 8) that uses normalized service demands rather than the prob-
abilities introduced in Algorithm 2 – it is modified to accept an array of service demand values.
The interpolation of these service demands used in Algorithm 3 is maintained, hence referred to as
MVASD: Single Server (multi-server queues normalized as a single server). We notice deterioration
in predicted performance with both throughout and response time deviations greater than those
produced by Algorithm 3. This is specially crucial when the bottleneck in the performance is due
to CPU utilization, as it is in the case of this example. This demonstrates the need for accurate
multi-server MVA models (as proposed in [8]), that can have significant impact on performance
prediction, especially at higher concurrencies.

As utilization data is an important factor in determining the hardware bottleneck among available
resources, we analyze the predicted outputs for the database server performance with measured
utilization in Fig. 9. As expected from Table 3, we see the CPU and disk utilization reach saturation
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Figure 6: Throughput and Response Time model outputs generated by Algorithms 2 and 3 in the
VINS application.

Users Load Server Application Server Database Server
CPU Disk Net-Tx Net-Rx CPU Disk Net-Tx Net-Rx CPU Disk Net-Tx Net-Rx

1 0.07 0.003 0.0014 0.0076 0.07 0.0045 0.051 0.058 6.0 4.0 0.0054 0.0516
14 0.27 0.0036 0.0114 0.067 0.62 0.0064 0.684 0.77 41.5 16.0 0.0677 0.686
28 0.68 0.003 0.025 0.18 1.05 0.004 1.22 1.38 69.5 31.0 0.12 1.214
70 1.24 0.0032 0.021 0.115 1.596 0.0052 1.83 1.99 79.0 75.0 0.172 1.83

140 0.58 0.004 0.037 0.21 2.12 0.005 2.466 2.75 89.25 95.0 0.251 2.64
168 0.352 0.0024 0.0343 0.23 1.55 0.0028 1.895 2.01 89.0 96.0 0.172 1.857
210 0.476 0.0032 0.036 0.2 1.63 0.0075 2.128 2.31 86.25 96.0 0.201 2.147

Table 3: Utilization % observed during Load Testing in the JPetStore application.

levels at > 140 users. We notice that the predicted utilization curves from MVASD follow measured
values closely, as a consequence of the spline interpolation of service demands.

6.2 Prediction Accuracy
Table 4 and 5 display the mean deviations seen for throughput (pages/second) and Response Time
(cycle time R+Z) generated by various models. The mean % deviation after consideringM measured
observations is defined as:

%Deviation =
∑M

m=1
|Predicted(m)−Measured(m)|

Measured(m) × 100
M

(15)

The lowest deviations are seen by the MVASD outputs; with Algorithm 2, there are considerable
deviations seen when service demand collected at varying concurrency i is input into MVA i. This
shows the importance of studying the underlying service demand as a function of concurrency and
incorporating this into MVA. As varying service demands are pathologically seen in multi-tiered
systems, it is a critical aspect that is often overlooked in performance modeling. Similarly, we
observe that MVASD:Single-Server models under perform in prediction; thus, incorporating a multi-
server model that closely follows multi-core CPU performance is also necessary for accurate analysis.
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Figure 7: Throughput and Response Time model outputs generated by Algorithms 2 and 3 in the
JPetStore application.

Prediction accuracy of MVASD is comparable to that of TeamQuest which guarantees 95% accuracy
[5].

Metric Model Deviation (%)
Throughput MVASD 2.298

(Pages/second) MVA 203 24.62
MVA 1001 2.885
MVA 1204 2.81

Response Time MVASD 8.61
(Cycle Time) MVA 203 100.83

R + Z MVA 1001 6.046
MVA 1204 10.73

Table 4: Mean Deviation in Modeling the VINS application.

7 Modeling Service Demands with Splines
In order to implement MVASD, the collected service demands were interpolated with splines. Fig.
10 demonstrates the interpolated service demands produced via spline interpolation in Scilab on the
VINS Database Server service demands. We notice that the polynomial splines generated overlap
with the measured points and interpolates values that are not sampled. In general, the trend of the
curves show that service demand decreases with increase in workload. Possible explanations that
suggest making up for increased contention of hardware resources with increased workload: caching
of resources at CPU|Disk to improve efficient processing, batch processing at CPU|Disk and superior
branch prediction at CPU.

We also examined the effect of service demand vs. throughput rather than against concurrency
(Fig. 11). Typically, service demand has been modeled as a function of concurrency and think
time. However, generating splines with respect to increasing throughput can lead to more tractable
models when using open systems, where throughput can be easier measured. It was noted that
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Figure 8: Throughput and Response Time model outputs generated by Algorithms 2 and 3 in the
JPetStore application.

Figure 9: Utilization of the Database Server for the JPetStore application predicted via MVASD
Algorithm 3.

the general trend of service demands was similar to Fig. 10; however, the predicted outputs for
throughput and response times (JPetStore) showed higher deviation: 6.68% for throughput and
6.9% for response time. Accurately quantifying the service demand as a function of concurrency,
think time and throughput is a useful input for most prediction models.

In Fig. 12, we analyze the variation in interpolated service demands in Scilab generated for the
Database Server in JPetStore. As seen, with just 3 samples (concurrency 1, 14, 28), the deviation
in generated interpolation is more than for 5 samples (concurrency 1, 14, 28, 70, 140) and 7 samples
(concurrency 1, 14, 28, 70, 140, 168, 210). Essentially, this demonstrates that higher the spread of
collected service demands, better the interpolation and consequently closer the predicted outputs.
As the service demand evolves with concurrency – finding a general representation of this with a
few samples is a challenge and will be explored in future work.

Although both VINS and JPetStore applications were deployed on the same hardware specifi-
cations, from Fig. 10 and Fig. 12, we notice considerable changes in Database service demand
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Metric Model Deviation (%)
Throughput MVASD: Single-Server 10.42

(Pages/second) MVASD 0.558
MVA 28 18.94
MVA 70 5.44
MVA 140 7.79
MVA 210 4.03

Response Time MVASD: Single-Server 7.283
(Cycle Time) MVASD 1.2

R + Z MVA 28 21.12
MVA 70 6.76
MVA 140 8.59
MVA 210 2.37

Table 5: Mean Deviation in Modeling the JPetStore application.

Figure 10: Spline Interpolated Service Demands for the Database Server in the VINS application.

splines. This shows that a general profiling of the underlying hardware does not help in estimat-
ing service demand variations. Application specific performance modeling through utilization of
CPU|Disk|Network resources and throughput and varying concurrency, is necessary for accurate
performance profiling.

8 Interpolating with Chebyshev Nodes
From our analysis in the previous section, with a fewer number of sample service demand inputs (Fig.
12), considerable deviation in the interpolated splines are observed. This is typically attributed to
the Runge’s phenomenon [32], that is, the problem of oscillation that occurs when using polynomial
interpolation over a set of equi-spaced interpolation points.

To avoid this phenomenon, specially with a small set of interpolating points, Chebyshev Nodes
[33] have been proposed. For a given number of interpolating points n, the Chebyshev Nodes in the
interval (−1, 1) are:

xk = cos
(

2k − 1
2n π

)
, k = 1, . . . , n. (16)

These are the roots of the Chebyshev polynomial of the first kind of degree n. For nodes over an
arbitrary interval [a, b] a transformation can be used:

xk = 1
2(a+ b) + 1

2(b− a) cos
(

2k − 1
2n π

)
, k = 1, . . . , n. (17)

The Chebyshev Nodes are useful in our case as they form a good set of nodes for polynomial spline
interpolation. Given a function f on the interval [−1,+1] and n points x1, x2, . . . , xn, in that interval,
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Figure 11: Interpolation of Service Demands against Throughput for the JPetStore Application
Database.

Figure 12: Splines generated for the Database Server with various Samples for the JPetStore appli-
cation.
the interpolation polynomial is that unique polynomial P which has value f(xi) at each point xi.
The interpolation error at x is:

f(x)−P(x) = f (n)(x′)
n!

n∏
i=1

(x− xi) (18)

for some x′ ∈ [−1, 1]. It may then be shown that the interpolation error satisfies the error bound:

|f(x)−P(x)| ≤ 1
2n−1n! max

x′∈[−1,1]

∣∣∣f (n)(x′)
∣∣∣ (19)

We compare the above error bound produced for exponential functions with various mean values µ
in Fig. 13. Notice that for greater than 5 nodes, the error rate drops to less than 0.2% for all cases.

Typically, performance testing experts pick arbitrary points to generate load tests. These points
are then interpolated to generate the performance measures. In this experiment, we performed
tests at specific sample suggested in eq. 17. For the JPetStore application, (a = 1, b = 300
in eq. 17), three settings were used: Chebyshev 3 (concurrency N = 22, 151, 280), Chebyshev 5
(N = 9, 63, 151, 239, 293), Chebyshev 7 (N = 5, 34, 86, 151, 216, 268, 297). Fig. 14 demonstrates
the spline interpolated service demands generated with differing Chebyshev Nodes. We see that
the Runge’s phenomenon of oscillation between points is not seen in any of these cases due to the
judicious selection of sample points. When we further compare the database Disk Service Demand
points on the same graph in Fig. 15, we notice extra undulations in the interpolations provided
by Random sampling. As the Chebyshev Nodes have been specifically generated to counter this
behavior, load testers could make use of the specified test points rather than random sampling.
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Figure 13: Error rates produced by varying Chebyshev Nodes on Exponential functions.

Figure 14: Spline interpolation of Service Demands with various Chebyshev Nodes.

Revisiting the performance prediction of the MVASD algorithm, we input the above service
demand curves for the JPetStore application. As seen in Fig. 16, even with just 3 Chebyshev
Nodes, the predicted throughput and cycle times are quite accurate. This shows that the even
with a few number of Chebyshev Nodes, if the service demands are spline interpolated, the output
MVASD is reliable. So, designers of load tests should collect service demands at specific points based
on the accuracy level needed (eq. 19) for suitable prediction. If there are constraints on the number
of tests or the maximum licenses available, effort should be made to generate test samples close to
the Chebyshev Nodes.

Fig. 17 is a typical workflow that should be followed for accurate performance prediction. De-
pending on the range of concurrences and values, Step 1 should generate the load testing points
using Chebyshev Nodes. This is followed by actual load tests in Step 2 to generate service demand
samples. The final Step 3 integrates this input with spline interpolation to generate an array of
service demands; the MVASD algorithm then predicts the throughput and cycle times of the appli-
cation under test. Such a workflow would yield accurate performance prediction of web applications
across a variety of hardware infrastructures.
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Figure 15: Comparing the outputs of Chebyshev and Random Sampling of Service Demands.

Figure 16: MVASD output for the JPetStore Application with various Chebyshev Nodes.

9 Conclusions
Mean Value Analysis (MVA), while successful for extrapolation of throughput and response time
values in closed queuing networks, suffers under varying service demands. As this problem is patho-
logical in multi-tiered systems, where utilization of CPU|Disk|Network varies with increasing concur-
rency, improvements in traditional MVA techniques are needed. In this paper, we have analyzed the
use of an alternative version of the MVA algorithm that can accept an array of service demands. By
employing the classic service demand and Little’s laws, inputs needed to estimate throughput and
response time under higher concurrent loads are generated. Utilizing spline interpolation of service
demands, we generate an array of values that provide superior estimates, and refer to this technique
as MVASD. Modeling vehicle insurance and e-commerce web applications, MVASD yields accurate
performance models within 3% and 9% deviation for throughput and response time, respectively.
This prediction technique can handle multi-server, multi-tier queues along with service demands
collected over varied horizons of concurrency. Further, we have analyzed spline interpolated service
demands as a function of throughput, which can be applied to open systems. Using Chebyshev
Nodes, we also propose specific points for service demand sampling that would reduce interpolation
and prediction error even with a small number of test points.
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Figure 17: Workflow for Performance Prediction of Web Applications.
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