
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 6, Number 1, pages 42–63, January 2016

Bulk execution of Euclidean algorithms on the CUDA-enabled GPU

Toru Fujita, Koji Nakano, and Yasuaki Ito

Department of Information Engineering, Hiroshima University
Kagamiyama 1-4-1, Higashihiroshima 739-8527, Japan

Received: August 1, 2015
Revised: October 26, 2015
Accepted: December 1, 2015

Communicated by Akihiro Fujiwara

Abstract

The bulk execution of a sequential algorithm is to execute it for many different inputs in turn
or at the same time. A sequential algorithm is oblivious if the address accessed at each time
unit is independent of the input. It is known that the bulk execution of an oblivious sequential
algorithm can be implemented to run on a GPU very efficiently. The main purpose of our work
is to implement the bulk execution of a Euclidean algorithm computing the GCD (Greatest
Common Divisor) of two large numbers in a GPU. We first present a new efficient Euclidean
algorithm that we call the Approximate Euclidean algorithm. The idea of the Approximate
Euclidean algorithm is to compute an approximation of quotient by just one 64-bit division
and to use it for reducing the number of iterations of the Euclidean algorithm. Unfortunately,
the Approximate Euclidean algorithm is not oblivious. To show that the bulk execution of the
Approximate Euclidean algorithm can be implemented efficiently in the GPU, we introduce a
semi-oblivious sequential algorithms, which is almost oblivious. We show that the Approximate
Euclidean algorithm can be implemented as a semi-oblivious algorithm. The experimental
results show that our parallel implementation of the Approximate Euclidean algorithm for 1024-
bit integers running on GeForce GTX Titan X GPU is 90 times faster than the Intel Xeon CPU
implementation.

Keywords: Euclidean algorithm, GPGPU, CUDA, bulk execution

1 Introduction

The GPU (Graphics Processing Unit) is a specialized hardware designed to accelerate computation
for building and manipulating images [5, 22, 24]. Latest GPUs are designed for general purpose
computing and can perform computation in applications traditionally handled by the CPU. Hence,
GPUs have recently attracted the attention of many application developers [5, 6, 7, 17, 25]. NVIDIA
provides a parallel computing platform and application programming interface model called CUDA
(Compute Unified Device Architecture) [14, 15], the computing engine for NVIDIA GPUs. CUDA
gives developers access to the virtual instruction set and memory of the parallel computational
elements in NVIDIA GPUs. In many cases, GPUs are more efficient than multicore processors [10],
since they have thousands of processor cores and very high memory bandwidth.

CUDA uses two types of memories in the NVIDIA GPUs: the shared memory and the global
memory [15]. The shared memory is an extremely fast on-chip memory with lower capacity, say,
16-96K bytes. The global memory is implemented as an off-chip DRAM, and thus, it has large

42

International Journal of Networking and Computing

capacity, say, 1.5-12 Gbytes, but its access latency is very long. The efficient usage of the shared
memory and the global memory is a key for CUDA developers to accelerate applications using GPUs.
In particular, we need to consider bank conflicts of the shared memory access and coalescing of the
global memory access [6, 7, 10, 11, 14]. The address space of the shared memory is mapped into
several physical memory banks. If two or more threads access the same memory banks at the same
time, the access requests are processed in turn. Hence, to maximize the shared memory access
performance, threads of CUDA should access distinct memory banks to avoid the bank conflicts of
the memory accesses. To maximize the throughput between the GPU and the DRAM chips, the
consecutive addresses of the global memory must be accessed at the same time. Thus, CUDA threads
should perform coalesced access when they access the global memory. Also, the latency of the global
memory access is several hundred clock cycles, while that of the shared memory access is quite
small [15]. Hence, we should minimize the memory access to the global memory to maximize the
performance. In fact, there are several types of memory except the shared memory and the global
memory in CUDA such as the texture memory, the surface memory, and the constant memory [15].
However, these memories are placed to off-chip memory where the global memory is stored. They
are used for different purposes in accordance to the use. For example, the texture memory is a
read-only memory for GPU programs and its special application program interfaces are supported.
However, they are essentially the same memory.

It is well known that the Euclidean algorithm [8] can compute the GCD of two numbers very
efficiently. The original Euclidean algorithm repeats modulo computation of two numbers until
one of them reaches zero and the other one stores the GCD. However, modulo computation of
large numbers takes a lot of time. Hence, the Binary Euclidean algorithm [20], which does not use
modulo computation, is often used to compute the GCD. Basically, the Binary Euclidean algorithm
repeats subtraction of two numbers and arithmetic shifts until one of them reaches zero. The
Binary Euclidean algorithm needs more iterations than the original Euclidean algorithm, but the
computation of each iteration of the Binary Euclidean algorithm takes less time than that of the
original Euclidean algorithm. Totally, the Binary Euclidean algorithm runs faster than the original
Euclidean algorithm, and it is commonly used to compute the GCD.

The main contribution of this paper is to present a new Euclidean algorithm for computing the
GCD that can be implemented in CUDA-enabled GPUs. The idea of our new Euclidean algorithm
that we call the Approximate Euclidean algorithm is to compute a good approximation of quotient by
simple 64-bit division and to use it for reducing the number of iterations of the Euclidean algorithm.
It runs much faster than the original Euclidean algorithm and the Binary Euclidean algorithm.
We also present an implementation of the Approximate Euclidean algorithm optimized for CUDA-
enabled GPUs.

In our previous papers [21, 23], we introduced obliviousness of a sequential algorithm and showed
that the bulk execution of an oblivious sequential algorithm can be implemented very efficiently in
CUDA-enabled GPUs. A sequential algorithm is oblivious if an address accessed at each time unit is
independent of the input. More formally, there exists a function a such that the algorithm accesses
address a(t) or does not access any address at every time t (≥ 0). For example, let b be an array
of size n and we want to determine if there exists i such that b[i] ̸= 0. In other words, we compute
the logical OR of all b[i]’s. This can be done by reading the value of b[i] from i = 0 to n − 1 one
by one. Once it finds i such that b[i] ̸= 0, it terminates and b[i + 1], b[i + 2], . . . are not accessed.
If it accesses b[n − 1] and finds b[n − 1] = 0, then all b[i]’s are zero. Clearly, this algorithm is
oblivious because at each i-th iteration, it accesses b[i] or does not access the memory. The bulk
execution of a sequential algorithm is to execute it for many different inputs in turn or at the same
time. Suppose that each input of the bulk execution is assigned to a CUDA thread and each CUDA
thread executes the sequential algorithm for an assigned input. Since each thread accesses the same
address at each time unit, memory access to the global memory is coalesced if the input and the
work space is arranged in the CUDA global memory in column-wise. Hence, this implementation of
the bulk execution of a sequential algorithm runs very fast.

We also introduce a sequential algorithm with synchronization, which can execute sync instruc-
tion. The execution of it can be partitioned into sub-executions by sync instructions such that a
sub-execution is an execution between two consecutive sync instructions. We say that a sequential

43

Bulk execution of Euclidean algorithms on the CUDA-enabled GPU

algorithm with synchronization is oblivious if all sub-executions are oblivious. We will show that
when a sequential algorithm with synchronization is oblivious, the bulk execution of it can be imple-
mented in the GPU very efficiently. The concept of the obliviousness of a sequential algorithm with
synchronization is necessary to show that our Approximate Euclidean algorithm can be implemented
to run in the GPU efficiently.

However, unfortunately, our Approximate Euclidean algorithm is not oblivious. Hence, we further
introduce semi-obliviousness, and show that our Approximate Euclidean algorithm is semi-oblivious
in the sense that an address accessed at each of almost all time units. In other words, semi-oblivious
algorithm may access different addresses in few time units. If each of the CUDA threads executes
a semi-oblivious sequential algorithm for the bulk execution, then they may perform non-coalesced
access to the global memory. However, if the ratio of non-coalesced access is small enough, the
bulk execution of a semi-oblivious sequential algorithm still runs efficiently on the GPU. We will
show that the Approximate Euclidean algorithm can be implemented as a semi-oblivious sequential
algorithm with sync, and it runs on CUDA-enabled GPUs efficiently. The implementation results
on GeForce GTX Titan X show that the GCD of two randomly generated 1024-bit numbers can
be computed in 0.482 microseconds per GCD computation. Also, it is 90 times faster than the
Approximate Euclidean algorithm on a single processor.

One of the applications of GCD computation is to break RSA keys [18]. Suppose that we have
a lot of RSA moduli collected from the Web. If a pair of two RSA moduli in them shares a prime
number, each of them can be decomposed into two prime numbers easily by computing the GCD. If
an RSA moduli can be decomposed into two prime numbers, the corresponding RSA decryption key
can be obtained. Such pairs of RSA keys are called weak RSA keys. By computing the GCD of all
pairs of RSA moduli corrected from the Web, we can find weak RSA keys if exist. Actually, several
public keys collected from the Web includes weak RSA keys [9]. Several previously published papers
have presented GPU implementations of the Binary Euclidean algorithm for breaking weak RSA
keys in CUDA-enabled GPU. Fujimoto [2] has implemented the Binary Euclidean algorithm using
CUDA and evaluated the performance on GeForce GTX285 GPU. The experimental results show
that the GCDs for 131072 pairs of 1024-bit numbers can be computed in 1.431932 seconds. Hence, his
implementation runs 10.9 microseconds per one 1024-bit GCD computation. Scharfglass et al. [19]
have presented a GPU implementation of the Binary Euclidean algorithm. It performs the GCD
computation of all 199990000 pairs of 20000 RSA moduli with 1024 bits in 2005.09 seconds using
GeForce GTX 480 GPU. Thus, their implementation performs each 1024-bit GCD computation
in 10.02 microseconds. Quite recently, White [26] has showed that the same computation can
be performed in 63.0 seconds on Tesla K20Xm. It follows that it computes each 1024-bit GCD
in 3.15 microseconds. In our conference version of this paper [3], we have shown that the GCD
computation for breaking weak RSA keys runs 0.346 microseconds per GCD computation. Note
that, this implementation of the conference version is faster than this journal version paper, because
the GCD computation for breaking RSA keys can terminate earlier. For example, a 1024-bit RSA
modulo is the product of two 512-bit prime numbers. Hence, we can terminate a Euclidean algorithm
as soon as we know that the GCD has less than 512 bits.

On the other hand, it has been presented [4] that a sequential algorithm can find a weak RSA
keys much faster than the pairwise GCD computation for all pairs of two RSA moduli. The idea
is to compute, for each RSA modulo, the GCD with the product of all other RSA moduli. If an
RSA modulo shares a prime number with one of all other RSA moduli, then the GCD is the prime
number. The computing time can be reduced by creating a remainder tree of all RSA moduli by
repeating complicated but efficient modulo computation [1]. This sequential algorithm runs faster
than a parallel implementation of pairwise GCD computation using the GPU. Hence it makes no
sense to use the pairwise GCD computation for breaking weak RSA keys. However, our GPU
implementation of pairwise GCD computation is still significant in the area of GPU computation.
The efficient sequential algorithm uses very complicated remainder tree technique and fast modulo
computation, and it just finds a pair of RSA moduli sharing a prime number in a large set of RSA
moduli. It works only for the case that most of pairs of RSA moduli are coprime, and very few pairs
share a prime number. Hence, the sequential algorithm using the remainder tree technique cannot
be used to compute the GCD for all pairs. Since we want to compute the GCD of all pairs, the

44

International Journal of Networking and Computing

efficient sequential algorithm for breaking RSA moduli using a remainder tree cannot be used for
this purpose. Our GPU implementation is the best for this task.

This paper is organized as follows. We first review several Euclidean algorithms in Section 2.
We then go on to present our Approximate Euclidean algorithm that computes an approximation
of quotient of two numbers in Section 3. In Section 4, we show that our GPU implementation for
the bulk execution of the Approximate Euclidean algorithm can be accelerated further using PTX
instructions, which are assembly language instruction for CUDA-enabled GPUs. Section 5 reviews
the definition of obliviousness of a sequential algorithm and the bulk execution. It also shows
that the bulk execution of a oblivious sequential algorithm can be implemented efficiently on the
Unified Memory Machine (UMM), which is a theoretical model for GPU computing. In Section 6,
we introduce a sequential algorithm with synchronization and show that its bulk execution can
be implemented efficiently on the UMM if it is oblivious. Section 7 introduces a semi-oblivious
sequential algorithm and shows that the bulk execution can be implemented efficiently. Finally, we
show experimental results of the performance of the Euclidean algorithms both on the CPU and
on the GPU in Section 8. It shows that the Approximate Euclidean algorithm run faster than the
others. Section 9 concludes our work.

2 Euclidean algorithms for computing the GCD

The main purpose of this section is to review a classical Euclidean algorithm for computing the GCD
of two numbers X and Y .

Let GCD(X,Y) denote the GCD of X and Y . Euclidean algorithms for computing the GCD are
based on the following fact:

Lemma 1. For any integer α ≥ 0 such that X > Y · α, we have GCD(X,Y) = GCD(X − Y · α, Y).

Proof. Suppose that GCD(X,Y) = 1, that is, X and Y are coprime. We will prove that GCD(X − Y ·
α, Y) = 1 always holds by contradiction. If Y and X−Y ·α are not coprime, there exists a common
divisor h ≥ 2 such that Y = Y ′ ·h and X−Y ·α = X ′ ·h. We have X = (Y ′ ·α+X ′) ·h, and thus X
and Y have common divisor h, a contradiction. Suppose that GCD(X,Y) = g (≥ 2). Clearly, there
exists two coprime numbers x and y such that X = x ·g and Y = y ·g. Since X−Y ·α = (x−y ·α)g,
it is sufficient to show that y and x − y · α are coprime. This can be proved in the same way by
contradiction.

Let rshift(X) be the function such that it returns an odd number X ′ such that X = X ′ · 2i
for some integer i ≥ 0. In other words, it returns the number obtained by removing consecutive 0
bits from the least significant bit of X. The reader should have no difficulty to confirm that the
following lemma is correct.

Lemma 2. For any even numbers X and Y , GCD(X,Y) = 2 ·GCD(X2 ,
Y
2) always holds. Also, for any

odd number X and even number Y , GCD(X,Y) = GCD(X, Y
2) = GCD(X, rshift(Y)) always holds.

For simplicity, we assume that both inputs X and Y are odd and X ≥ Y holds when we compute
GCD(X,Y). From Lemma 2, it should have no difficulty to modify all GCD algorithms shown in this
paper to handle even input numbers. For later reference, let s denote the number of inputs bits of
X and Y .

Let swap(X,Y) denote a function to exchange the values of X and Y . We can write a standard
Euclidean algorithm for computing the GCD of X and Y as follows:

[Original Euclidean algorithm]
gcd(X,Y){

do {
X ← X mod Y ; // X < Y always holds
swap(X,Y); // X > Y always holds

} while(Y ̸= 0)
return(X);

45

Bulk execution of Euclidean algorithms on the CUDA-enabled GPU

}

Let α = ⌊XY ⌋. From X mod Y = X − Y · ⌊XY ⌋ and Lemma 1, this algorithm returns the GCD
correctly. We will show that the Original Euclidean algorithm runs no more than 2s iterations of
the do-loop. If X < 2Y , then X will store X −Y , which is less than X

2 . Otherwise, X will store the

value less than Y , which is no more than X
2 . Hence, the value of X is halved or smaller and thus

the number of bits in X is decreased by one or more. Since the number of bits of one of the two
numbers is decreased by one, the Original Euclidean algorithm performs no more than 2s iterations.

Since modulo computation is costly, the Binary Euclidean algorithm, which does not perform
modulo computations, is often used to compute the GCD efficiently:

[Binary Euclidean algorithm]
gcd(X,Y){

do{
if(X is even) X ← X

2 ;
else if(Y is even) Y ← Y

2 ;
else X ← X−Y

2 // X − Y is always even
if(X < Y) swap(X,Y);

} while (Y ̸= 0)
return(X);

}

Clearly, when X−Y
2 is computed, both X and Y are odd. Hence, X − Y is even and it makes sense

to compute X−Y
2 . If X (or Y) is even, then the number of bits in X (or in Y) is decreased by one.

If both X and Y are odd, the number of bits in X is decreased by one or more. Thus, the number
of iterations of the do-loop of the Binary Euclidean algorithm is also no more than 2s.

Note that the Binary Euclidean algorithm removes 0 in the least significant bit. We can reduce
the number of iterations of the do-loop by removing consecutive 0 bits. Using the rshift function,
we can accelerate the Binary Euclidean algorithm as follows:

[Fast Binary Euclidean algorithm]
gcd(X,Y){

do {
X ←rshift(X − Y);
if(X < Y) swap(X,Y)

} while (Y ̸= 0)
return(X);

}

From Lemmas 1 and 2, GCD(X,Y) = GCD(X − Y, Y) = GCD(rshift(X − Y), Y) for all odd X and Y
and thus, this algorithm correctly computes the GCD. In each iteration of the Fast Binary Euclidean
algorithm, X and Y are always odd and the number of bits in X or in Y can be decreased by one
or more. Hence, for any input numbers, the number of iterations of the do-while loop of the Fast
Binary Euclidean algorithm is no larger than that of the Binary Euclidean algorithm.

For the reader’s benefits, we use both the decimal system and the binary system to represent
numbers. For example, numbers 223 in the decimal system or 11011111 in the binary system is
denoted by “223”, “1101,1111”, or “1101,1111 (223).” Table 1 shows an example of computation
performed by the Binary Euclidean algorithm and the Fast Binary Euclidean algorithm for

X = 1111, 1110, 1101, 1100, 1011(1043915) and,
Y = 1011, 1011, 1011, 1011, 1011(768955).

We can confirm that the output 0101(5) is equal to the GCD of X and Y . The Euclidean algorithm
computes the GCD in 24 iterations, while the Fast Euclidean algorithm runs only 16 iterations.

46

International Journal of Networking and Computing

Table 1: An example of computation performed by the Binary Euclidean algorithm and the Fast
Binary Euclidean algorithm

Binary Euclidean algorithm Fast Binary Euclidean algorithm
1 X 1111,1110,1101,1100,1011 1111,1110,1101,1100,1011

Y 1011,1011,1011,1011,1011 1011,1011,1011,1011,1011
2 X 1011,1011,1011,1011,1011 1011,1011,1011,1011,1011

Y 0010,0001,1001,0000,1000 0100,0011,0010,0001
3 X 1011,1011,1011,1011,1011 0101,1011,1100,0100,1101

Y 0001,0000,1100,1000,0100 0100,0011,0010,0001
4 X 1011,1011,1011,1011,1011 0001,0101,1110,0100,1011

Y 1000,0110,0100,0010 0100,0011,0010,0001
5 X 1011,1011,1011,1011,1011 1000,1101,1001,0101

Y 0100,0011,0010,0001 0100,0011,0010,0001
6 X 0101,1011,1100,0100,1101 0100,0011,0010,0001

Y 0100,0011,0010,0001 0001,0010,1001,1101
7 X 0010,1011,1100,1001,0110 0001,0010,1001,1101

Y 0100,0011,0010,0001 1100,0010,0001
8 X 0001,0101,1110,0100,1011 1100,0010,0001

Y 0100,0011,0010,0001 0001,1001,1111
9 X 1000,1101,1001,0101 0101,0100,0001

Y 0100,0011,0010,0001 0001,1001,1111
10 X 0100,0011,0010,0001 0001,1101,0001

Y 0010,0101,0011,1010 0001,1001,1111
11 X 0100,0011,0010,0001 0001,1001,1111

Y 0001,0010,1001,1101 0001,1001
12 X 0001,1000,0100,0010 1100,0011

Y 0001,0010,1001,1101 0001,1001
13 X 0001,0010,1001,1101 0101,0101

Y 1100,0010,0001 0001,1001
14 X 1100,0010,0001 0001,1001

Y 0011,0011,1110 1111
15 X 1100,0010,0001 1111

Y 0001,1001,1111 0101
16 X 0101,0100,0001 0101

Y 0001,1001,1111 0101
17 X 0001,1101,0001 0101

Y 0001,1001,1111 0000
18 X 0001,1001,1111

Y 0001,1001
19 X 1100,0011

Y 0001,1001
20 X 0101,0101

Y 0001,1001
21 X 0001,1110

Y 0001,1001
22 X 0001,1001

Y 1111
23 X 1111

Y 0101
24 X 0101

Y 0101
X 0101
Y 0000

47

Bulk execution of Euclidean algorithms on the CUDA-enabled GPU

Using the idea of removing consecutive 0 bits used in the Fast Binary Euclidean algorithm,
we can accelerate the Original Euclidean algorithm. Let “ div ” denote quotient operator such
that X div Y = ⌊XY ⌋, that is, the rounded-down integer of X

Y . Clearly, we have X mod Y =
X − Y · (X div Y). Thus, we can rewrite the Original Euclidean algorithm as follows:

[Original Euclidean algorithm using div]
gcd(X,Y){
do {
Q← X div Y ;
X ← X − Y ·Q;
swap(X,Y);
} while(Y ̸= 0);
return(X);
}

If X − Y · Q is even, then we can reduce the number of bits in X by rshift(X). Since X and Y
are odd, X − Y ·Q is even when Q is odd. However, if Q is even then X − Y ·Q is odd and rshift

does not remove 0 bits. Hence, it makes sense to decrease Q by one if Q is even. Using this idea,
we can further accelerate the Original Euclidean algorithm as follows:

[Fast Euclidean algorithm]
gcd(X,Y){
do {
Q← X div Y ;
if(Q is even) Q← Q− 1
X ← rshift(X − Y ·Q);
if(X < Y) swap(X,Y);
} while(Y ̸= 0);
return(X);
}

From Lemmas 1 and 2, GCD(X,Y) = GCD(rshift(X − Y ·Q), Y) and thus, this algorithm correctly
computes the GCD. Note that, X may be larger than Y after executing X ← X − Y · Q. For
example, if X = 15 and Y = 7, then X div Y = 2. Hence, X = 15 − 7 · (2 − 1) = 8 and X > Y
holds. Thus, we need to compare X and Y and exchange them if X < Y , to guarantee that X ≥ Y
holds for the next iteration.

Table 2 shows an example of computation performed by the Original Euclidean algorithm and
the Fast Euclidean algorithm for the same input numbers X and Y as Table 1. We can see that
they perform fewer iterations than the Binary Euclidean algorithm and the Fast Binary Euclidean
algorithm. Also, the Fast Euclidean algorithm performs fewer iterations than the Original Euclidean
algorithm. However, for some input numbers, the Fast Euclidean algorithm performs more iterations
than the Original Euclidean algorithm. For example, if X = 39 and Y = 9, then the GCD is
computed as follows. The Original Euclidean algorithm runs 2 iterations: (39, 9)→ (9, 3)→ (3, 0).
The Fast Euclidean algorithm runs 3 iterations: (39, 9) → (12, 9) → (9, 3) → (3, 0). Although such
examples exist, the Fast Euclidean algorithm takes fewer iterations than the Original Euclidean
algorithm for most input numbers.

3 The Approximate Euclidean algorithm for computing the
GCD

The main purpose of this section is to show our new Euclidean algorithm called the Approximate
Euclidean algorithm.

The Approximate Euclidean algorithm is based on the Fast Euclidean algorithm presented in
the previous section. The computation of quotient for large numbers performed by Fast Euclidean
algorithm is costly. Our new idea is to find a good approximation of quotient by small computing

48

International Journal of Networking and Computing

Table 2: An example of computation performed by the Original Euclidean algorithm and the Fast
Euclidean algorithm

Original Euclidean algorithm Fast Euclidean algorithm
X&Y Q X&Y Q

1 X 1111,1110,1101,1100,1011 1 1111,1110,1101,1100,1011 1
Y 1011,1011,1011,1011,1011 1011,1011,1011,1011,1011

2 X 1011,1011,1011,1011,1011 2 1011,1011,1011,1011,1011 43
Y 0100,0011,0010,0001,0000 0100,0011,0010,0001

3 X 0100,0011,0010,0001,0000 1 0100,0011,0010,0001 9
Y 0011,0101,0111,1001,1011 0111,0101,0011

4 X 0011,0101,0111,1001,1011 3 0111,0101,0011 11
Y 1101,1010,0111,0101 1001,1011

5 X 1101,1010,0111,0101 1 1001,1011 1
Y 1100,1000,0011,1100 0101,0101

6 X 1100,1000,0011,1100 10 0101,0101 1
Y 0001,0010,0011,1001 0010,0011

7 X 0001,0010,0011,1001 1 0010,0011 1
Y 0001,0010,0000,0010 0001,1001

8 X 0001,0010,0000,0010 83 0001,1001 5
Y 0011,0111 0101

9 X 0011,0111 1 0101
Y 0010,1101 0000

10 X 0010,1101 4
Y 1010

11 X 1010 2
Y 0101
X 0101
Y 0000

costs. We assume thatX and Y are stored in multiple d-bit words, and letD = 2d. The Approximate
Euclidean algorithm is described as follows:

[Approximate Euclidean algorithm]
gcd(X,Y){
do {
(α, β)← approx(X,Y);
if(β = 0){
if(α is even) α = α− 1; //α is odd
X ← rshift(X − Y · α); //Y · α is odd
} else X ← rshift(X − Y · α ·Dβ + Y); //α ·Dβ is even
if(X < Y) swap(X,Y);
} while (Y ̸= 0);
return(X);
}

From Lemmas 1 and 2, GCD(X,Y) = GCD(X − Y · α, Y) = GCD(rshift(X − Y · α ·Dβ + Y)) holds,
and thus, this algorithm is correct. In this algorithm, approx(X, Y) is a function to compute a
pair (α, β) such that α · Dβ (≤ Q) is a good approximation of Q = X div Y , and the computing
cost of approx(X,Y) is much smaller than that of X div Y . Also, to guarantee that X is even,
X − Y · (α · Dβ − 1) is computed if α · Dβ is even. Note that if α · Dβ is always 1, that is,
(α, β) = (1, 0) then the Approximate Euclidean algorithm is the same as the Fast Binary Euclidean

49

Bulk execution of Euclidean algorithms on the CUDA-enabled GPU

algorithm. Since the value of α ·Dβ can be more than 1, the number of iterations in the Approximate
Euclidean algorithm may be smaller than Binary Euclidean algorithms.

We first show the idea of implementation of approx(X, Y). Suppose that X and Y are repre-
sented by lX d-bit words x1x2 · · ·xlX and lY d-bit words y1y2 · · · ylY . In other words,

X = x1D
lX−1 + x2D

lX−2 + · · ·+ xlXD0

and
Y = y1D

lY −1 + y2D
lY −2 + · · ·+ ylY D

0

hold. It should be clear that lX ≥ lY always holds from X ≥ Y . Let ⟨x1x2⟩(= x1 · D + x2) and
⟨y1y2⟩(= y1 ·D+y2) be integers represented most significant two d-bit words of X and Y . Basically,
approx(X,Y) returns a pair (⟨x1x2⟩ div (⟨y1y2⟩+1), lX− lY). Hence, α ·Dβ = (⟨x1x2⟩ div (⟨y1y2⟩+
1)) ·DlX−lY is used as an approximation of Q = X div Y . Also, it is guaranteed that α ·Dβ ≤ Q.
Thus, X − Y · α ·Dβ is always non-negative.

We show an example using 4-bit words, that is, d = 4. Let X = 1101, 1001, 0000, 0011(55555),
and Y = 0100, 1101, 0010(1234). If this is the case, lX = 4, lY = 3, ⟨x1x2⟩ = 1101, 1001(217)
and ⟨y1y2⟩ = 0100, 1101(77). Hence we have, ⟨x1x2⟩ div (⟨y1y2⟩ + 1) = 217 div (77 + 1) = 2 and
lX − lY = 1. Thus, approx(X,Y) returns (α, β) = (2, 1) and we have α ·Dβ = 2 · 161 = 32, which
approximates X div Y = 45. Using this idea, the following function approx computes a pair (α, β):

approx(X,Y){
if(lX ≤ 2)
return (X div Y, 0); // Case 1

if(lY = 1) {
if(x1 ≥ y1)
return (x1 div y1, lX − 1); // Case 2-A

else
return (⟨x1x2⟩ div y1, lX − 2); // Case 2-B

}
if(lY = 2) {
if(⟨x1x2⟩ ≥ ⟨y1y2⟩)
return (⟨x1x2⟩ div ⟨y1y2⟩, lX − 2);// Case 3-A

else
return (⟨x1x2⟩ div (y1 + 1), lX − 3); // Case 3-B

}
if(⟨x1x2⟩ > ⟨y1y2⟩)
return (⟨x1x2⟩ div (⟨y1y2⟩+ 1), lX − lY); // Case 4-A

if(lX > lY)
return (⟨x1x2⟩ div (y1 + 1)), lX − lY − 1); // Case 4-B

return (1, 0); // Case 4-C
}

The reader should have no difficulty to confirm that operands of “ div ” have at most 2 words, that
is, 2d bits. Also, the resulting value of “ div ” has at most d bits.

Let us see how approx(X,Y) computes (α, β). It has four cases determined by the values of lX
and lY as illustrated in Figure 1. We will show that function approx outputs a good approximation
α ·Dβ of X div Y for each cases

Case 1: X has 1 or 2 words.
Clearly, Y also has 1 or 2 words from X ≥ Y . Hence, approx outputs (X div Y, 0) and we
have α ·Dβ = X div Y .
Example: IfX = 1101, 1111(223) and Y = 0010, 1101(45) then approx outputs (223 div 45, 0) =
(4, 0).

Case 2: X has more than 2 words and Y has 1 word. Case 2 has two sub-cases as follows:

50

International Journal of Networking and Computing

lX

lY

1 1

1

2

4

1 2 3 4 5 6

1

2

3

4

5

6

3

2

3

2

3

2

3

4 4 4

4 4

44

4

4

Figure 1: Cases for the values of lX and lY

Case 2-A: If x1 ≥ y1 then approx outputs (x1 div y1, lX − 1).
Example: If X = 1001, 0010, 1001(2345) and Y = y1 = 0100(4) then x1 = 1001(9) and
x1 ≥ y1 hold. If this is the case, approx outputs (9 div 4, 3− 1) = (2, 2). We can confirm
that α ·Dβ = 2 · 162 = 512 approximates X div Y = 2345 div 4 = 586.

Case 2-B: If x1 < y1 then approx outputs (⟨x1, x2⟩ div y1, lX − 2).
Example: If X = 0100, 1101, 0010(1234) and Y = 1100(12) then x1 = 0100(4) and
⟨x1, x2⟩ = 0100, 1101(77) hold. Hence, x1 < y1 is satisfied and approx outputs (77 div 12, 3−
2) = (6, 1). We can confirm that α · Dβ = 6 · 161 = 96 approximates X div Y =
1234 div 12 = 102.

Case 3: X has more than 2 words and Y has 2 words. Case 3 has two sub-cases as follows:

Case 3-A: If ⟨x1x2⟩ ≥ ⟨y1y2⟩ then approx outputs (⟨x1x2⟩ div ⟨y1y2⟩, lX − lY).
Example: IfX = 1001, 0010, 1001(2345) and Y = 0011, 1011(59) then ⟨x1x2⟩ = 1001, 0010(146).
Hence ⟨x1x2⟩ ≥ ⟨y1y2⟩ is satisfied and approx outputs (146 div 59, 3 − 2) = (2, 1). We
can confirm that α ·Dβ = 2 · 161 = 32 approximates X div Y = 2345 div 59 = 39.

Case 3-B: If ⟨x1x2⟩ < ⟨y1y2⟩ then approx outputs (⟨x1x2⟩ div (y1 + 1), lX − 3).
Example: IfX = 1001, 0010, 1001(2345) and Y = 1110, 0111(231) then ⟨x1x2⟩ = 1001, 0010(146)
and y1 = 1110(14). Since ⟨x1x2⟩ < ⟨y1y2⟩ satisfied, approx outputs (146 div (14+1), 3−
3) = (9, 0). We can confirm that α · Dβ = 9 · 160 = 9 approximates X div Y =
2345 div 231 = 10.

Case 4: Both X and Y have more than 2 words. Case 4 has three sub-cases as follows:

Case 4-A: If ⟨x1x2⟩ > ⟨y1y2⟩ then approx outputs (⟨x1x2⟩ div (⟨y1y2⟩ + 1), lX − lY). Note
that, from ⟨x1x2⟩ > ⟨y1y2⟩, we always have ⟨y1y2⟩ ≤ D2 − 1. Hence ⟨y1y2⟩ has at most
2d bits.
Example: If X = 1101, 0100, 0011, 0001(54321) and Y = 0100, 1101, 0010(1234) then
⟨x1x2⟩ = 1101, 0100(212) and ⟨y1y2⟩ = 0100, 1101(77). Since ⟨x1x2⟩ > ⟨y1y2⟩ is satisfied,
approx outputs (212 div (77+1), 4−3) = (2, 1). We can confirm that α ·Dβ = 2·161 = 32
approximates X div Y = 54321 div 1234 = 44.

Case 4-B: If ⟨x1x2⟩ ≤ ⟨y1y2⟩ and lX > lY then approx outputs (⟨x1x2⟩ div (y1 + 1), lX −
lY − 1).
Example: If X = 1101, 0100, 0011, 0001(54321) and Y = 1111, 1010, 0000(4000) then
⟨x1x2⟩ = 1101, 0100(212) and ⟨y1y2⟩ = 1111, 1010(250) hold. Hence, ⟨x1x2⟩ ≤ ⟨y1y2⟩
holds. Since y1 = 1111(15), approx outputs (212 div (15 + 1), 4 − 3 − 1) = (13, 0). We
can confirm that α ·Dβ = 13 · 160 = 13 approximates X div Y = 54321 div 4000 = 13.

Case 4-C: If this is the case, ⟨x1x2⟩ ≤ ⟨y1y2⟩ and lX ≤ lY hold. Recall that X ≥ Y and thus
⟨x1x2⟩ = ⟨y1y2⟩ and lX = lY must be satisfied. Hence the values of X and Y are almost
the same and it makes sense to return (1, 0) and α ·Dβ = 1 · 160 = 1 if this is the case.

51

Bulk execution of Euclidean algorithms on the CUDA-enabled GPU

Table 3: An example of computation performed by the Approximate Euclidean algorithm

X & Y CASE (α, β)
1 X 1111,1110,1101,1100,1011 4-A (1, 0)

Y 1011,1011,1011,1011,1011

X 1011,1011,1011,1011,1011 4-A (2, 1)
Y 0100,0011,0010,0001

3 X 1110,0110,1010,1111 4-A (3, 0)
Y 0100,0011,0010,0001

4 X 0100,0011,0010,0001 4-B (7, 0)
Y 0111,0101,0011

5 X 0111,0101,0011 4-A (1, 0)
Y 0011,1111,0111

6 X 0011,1111,0111 3-B (3, 0)
Y 1101,0111

7 X 1101,0111 1 (1, 0)
Y 1011,1001

8 X 1011,1001 1 (11, 0)
Y 1111

9 X 1111 1 (3, 0)
Y 0101
X 0101
Y 0000

Table 3 shows an example of computation performed by the Approximate Euclidean algorithm
for 4-bit words, that is, d = 4 and D = 16. It computes the GCD for the same inputs used in
Tables 1 and 2 in 9 steps. The values used to compute α in approx are underlined. We can confirm
that the Approximate Euclidean algorithm outputs 0101(5), the GCD of X and Y correctly.

Recall that the Fast Euclidean algorithm computes the exact value of quotient Q = X div Y .
On the other hand, the Approximate Euclidean algorithm uses an approximation α ·Dβ of quotient
Q. Hence, the Approximate Euclidean algorithm may take more iterations than the Fast Euclidean
algorithm. Actually, from Tables 2 and 3, we can see that the Fast Euclidean algorithm and the
Approximate Euclidean algorithm perform 8 and 9 iterations, respectively, for the same input num-
bers.

Table 4 shows the average number of iterations of do-while loops performed by the Euclidean
algorithms, (A) the Original Euclidean algorithm, (B) the Fast Euclidean algorithm, (C) the Binary
Euclidean algorithm, (D) the Fast Binary Euclidean algorithm, (E) the Approximate Euclidean
algorithm when pairs of two randomly generated s-bit unsigned odd integers for s = 1024, 2048,
4096, 8192, and 16384, respectively. We have generated integers with 2G bytes totally and evaluated
the number of iterations. For example, when s = 1024, we have generated 8 Mega pairs of 1024-bit
odd integers in [21023, 21024).

Each iteration of (A) and (B) is very costly, because they computes quotient/modulo of two
s-bit numbers. On the other hand, (C) and (D) involves no division/multiplication operation.
Further, each iteration of (E) involves one division of two 64-bit numbers, and s

32 repetitions 32-bit
multiplications. Hence, the computation of each iteration takes more time than that of (C) and (D).
However, they perform the same memory access operations to X and Y . Thus, if memory access
latency is large like GPUs, the computing time of each iteration of (E) is just little larger than that
of (C) and (D). Hence, it makes sense to evaluate and compare the number of iterations of (C), (D),
and (E).

From Table 4, we can see that

1. the number of iterations is proportional to the number of input bits,

52

International Journal of Networking and Computing

Table 4: The average number of iterations performed by the Euclidean algorithms, (A) the Original
Euclidean algorithm, (B) the Fast Euclidean algorithm, (C) the Binary Euclidean algorithm, (D) the
Fast Binary Euclidean algorithm, and (E) the Approximate Euclidean algorithm for 100000 random
odd numbers

1024 2048 4096 8192 16384
(A) Original Euclidean algorithm 598.5 1196.7 2393.1 4785.8 9571.5
(B) Fast Euclidean algorithm 380.9 761.7 1523.1 3046.0 6091.6
(C) Binary Euclidean algorithm 1444.8 2890.6 5782.3 11565.6 23132.2
(D) Fast Binary Euclidean algorithm 723.4 1446.4 2892.2 5783.8 11567.1
(E) Approximate Euclidean algorithm 380.9 761.7 1523.2 3046.0 6091.7
(E)−(B) 0.0059 0.0120 0.0227 0 .0457 0.0923

Table 5: The probability that β > 0 when the Approximate Euclidean algorithm is executed

1024 2048 4096 8192 16384
4.38099× 10−9 5.63433× 10−9 6.88731× 10−9 5.00944× 10−9 5.94903× 10−9

2. the number of iterations of (E) is about a half of (D) and about a quarter of (C), and

3. the number of iterations of (B) is the same as that of (E).

To see the small difference of (B) and (E), the table also show the average value of (E)-(B), that is,
the number of iterations of (E) minus that of (B). Quite surprisingly, their difference is only 0.001%-
0.002%. Recall that (B) computes the exact quotient by division of two large numbers, while (E)
computes an approximation by 64-bit division. Hence, we can say that approximated quotient is
sufficient for computing the GCD.

We should also note that the value of β computed by function approx in the Approximate
Euclidean algorithm is zero with very high probability. In the experiments to obtain Table 4, we
have recorded the value of β for each call of function approx. From the record, we have obtained
Table 5, which shows the probability that β > 0. We can see that the probability is very small and
it is very rare that X ←rshift(X − Y · α ·Dβ + Y) is executed.

4 Further acceleration using PTX instructions

PTX is a low-level parallel thread execution virtual machine and instruction set architecture of
GPU [16]. We can embed PTX instructions in CUDA C program as inline assembly codes. The 128-
bit product of two 64-bit unsigned integers cannot be obtained directly by a C language program. On
the other hand, PTX includes instructions for computing the 128-bit product. We note that the PTX
instructions are the most fundamental instructions on CUDA and cannot be divided into smaller
instructions. If some libraries are provided to compute 128-bit or more product, they consists of
several PTX codes. Therefore, we have used PTX instructions including the multiplication of two 64-
bit unsigned integers to accelerate the computation of rshift(X−Y ·α) and rshift(X−Y ·α·Dβ+Y).

Let lo(X) and hi(X) denote the least significant 64-bit and the most significant 64-bit unsigned
integers of a 128-bit unsigned integer X. More specifically, lo(X) = x63x62 · · ·x0 and hi(X) =
x127x126 · · ·x64, where X = x127x126 · · ·x0.

For 64-bit unsigned integer variables a, b, c, and d, we use the following PTX instructions for
multiplications.

mul.lo.u64 d, a, b: d← lo(a · b) is performed.

mul.hi.u64 d, a, b: d← hi(a · b) is performed.

53

Bulk execution of Euclidean algorithms on the CUDA-enabled GPU

mad.lo.u64 d, a, b, c: d← lo(a · b+ c) is performed

mad.hi.u64 d, a, b, c: d← hi(a · b+ c · 264) is performed

For 64-bit unsigned integer variables d, a, and b, and 32-bit signed integer variable c. We use the
following two PTX instructions to handle carry propagation:

setp.lo.s32.u64 c, a, b: d← (a < b)?− 1 : 0 is performed. In other words, if a < b then d← −1 is
performed. Otherwise, d← 0 is performed.

slct.u64.s32 d, a, b, c: d ← (c ≥ 0)?a : b is performed. In other words, if c is non-negative then
d← a is performed. Otherwise, d← b is performed.

We use these two PTX instructions as follows:

setp.lo.s32.u64 c, a, b // c← (a < b)?− 1 : 0
slct.u64.s32 d, 0, 1, c // d← (c ≥ 0)?0 : 1

Clearly, by these two PTX instructions, d← (a < b)?1 : 0 is performed.
We will show an example that uses these PTX instructions. Let Y = y1y2y3y4 be four 64-bit

unsigned integers variables that constitute a 256-bit unsigned integer and α be a 64-bit unsigned
integer variable. We can compute Z = Y α, where Z = z0z1z2z3z4 be five 64-bit unsigned integer
variables, by the following PTX program.

(1) mul.lo.u64 z4, y4, α // z4 ← lo(y4 · α)
(2) mul.hi.u64 c, y4, α // c← hi(y4 · α)
(3) mad.lo.u64 z3, y3, α, c // z3 ← lo(y3 · α+ c)
(4) setp.lo.s32.u64 t, z3, c // t← (z3 < c)?− 1 : 0
(4) slct.u64.s32 c, 0, 1, t // c← (t ≥ 0)?0 : 1
(5) mad.hi.u64 c, y3, α, c // c← hi(y3 · α+ c)
(6) mad.lo.u64 z2, y2, α, c // z2 ← lo(y2 · α+ c)
(7) setp.lo.s32.u64 t, z2, c // t← (z2 < c)?− 1 : 0
(7) slct.u64.s32 c, 0, 1, t // c← (t ≥ 0)?0 : 1
(8) mad.hi.u64 c, y2, α, c // c← hi(y2 · α+ c)
(9) mad.lo.u64 z1, y1, α, c // z1 ← lo(y1 · α+ c)
(10) setp.lo.s32.u64 t, z1, c // t← (z1 < c)?− 1 : 0
(10) slct.u64.s32 c, 0, 1, t // c← (≥ 0)?0 : 1
(11) mad.hi.u64 z0, y1, α, c // z0 ← hi(y1 · α+ c)

In this PTX program, c is a 64-bit unsigned integer variables to store the carry and t is a 32-bit
signed integer variables. Figure 2 illustrates the Z = Y ·α by the PTX program. This PTX program
computes the values of Z from the least significant 64-bit digit one by one. Although the computation
of X ←rshift(X − Y · α) and X ←rshift(X − Y · α ·Dβ + Y) are much more complicated, they
can be done by a similar way using these PTX instructions.

5 Oblivious sequential algorithms and bulk execution

In this section we review the obliviousness of sequential algorithms and the bulk execution of them.
We then go on to show that the bulk execution of oblivious sequential algorithm can be imple-
mented very efficiently in CUDA-enabled GPUs. Please see [23] for the details. We further define
semi-obliviousness of sequential algorithms. Intuitively, a semi-oblivious sequential algorithm is not
oblivious, but it is almost oblivious.

Intuitively, a sequential algorithm is oblivious if an address accessed at each time unit is inde-
pendent of the input [23] . More specifically, there exists a function a : {0, 1, . . . , t− 1} → N , where
t is the running time of the algorithm and N is a set of all non-negative integers such that, for
any input of the algorithm, it accesses address a(i) or does not access the memory at each time i

54

International Journal of Networking and Computing

y1

×

(2) (1)

(5) (3)

(8) (6)

(11) (9)

z4

+

(10)

(7)

(4)

z3z2z1z0

α

y2 y3 y4

Figure 2: Illustrating the computation of Z = Y · α using PTX instructions

0

1

2

3

4

5

6

7

12

13

14

15

A[0] A[1] A[2] A[3]l = 5

5-stage pipeline regsiters

W (0)

W (1)

3 4 6 12

3

4

6

12

10 11 8 9

8

9

10

11

8

9

10

11

memory
2 warps

w = 4

Figure 3: The UMM with width w = 4 and latency l = 5

(0 ≤ i ≤ t−1). In other words, at each time i (0 ≤ i ≤ t−1), it never accesses an address other than
a(i). Suppose that we need to execute a sequential algorithm for many different inputs on a single
CPU in turn or on a parallel machine at the same time. We call such computation bulk execution.

For theoretical performance analysis of the Approximate Euclidean algorithm, we first define
the UMM (the Unified Memory Machine) [12, 13] which captures the essence of the global memory
access of CUDA-enabled GPUs. We then go on to show that the bulk execution oblivious algorithms
can be implemented very efficiently on the UMM. Let us define the UMM with width w and latency
l. The memory of the UMM is partitioned into address groups A[0], A[1], . . . such that each A[j]
(j ≥ 0) involves j ·w, j ·w+1, . . . , (j+1) ·w− 1. The reader should refer to Figure 3 that illustrates
address groups for w = 4. Also, the memory access is performed through l-stage pipeline registers
as illustrated in Figure 3. Let p be the number of threads of the UMM and T (0), T (1), . . ., T (p− 1)
be the p threads. We assume that p is a multiple of w. The p threads are partitioned into p

w
groups called warps with w threads each. More specifically, p threads are partitioned into p

w warps
W (0),W (1), . . ., W (p

w −1) such that W (i) = {T (i ·w), T (i ·w+1), . . . , T ((i+1) ·w−1)}. Warps are
dispatched for the memory access in turn, and w threads in a warp try to access the memory at the
same time. More specifically, W (0),W (1), . . . ,W (p

w − 1) are dispatched in a round-robin manner if
at least one thread in a warp requests the memory access. If no thread in a warp needs the memory
access, such warp is not dispatched for the memory access. When W (i) is dispatched, w threads in
W (i) send the memory access requests, one request per thread, to the memory banks.

For the memory access, each warp sends the memory access requests to the memory banks
through the l-stage pipeline registers. We assume that each stage can store the memory access
requests destined for the same address group. For example, since the memory access requests by
W (0) are separated in three address groups in the figure, they occupy three stages of the pipeline
registers. Also, those by W (1) are in the same address group, they occupy only one stage. In general,
if the memory access requests by a warp are destined for d address groups, they occupy d stages. For
simplicity, we assume that the memory access is completed as soon as the request reaches the last
pipeline stage. Thus, all memory access requests by W (0) and W (1) in the figure are completed in
3(address groups)+1(address group)+5(latency)− 1 = 8 time units. We also assume that a thread

55

Bulk execution of Euclidean algorithms on the CUDA-enabled GPU

b0[0] b1[0] b2[0] b3[0]

b0[1] b1[1] b2[1] b3[1]

b0[2] b1[2] b2[2] b3[2]

b0[3] b1[3] b2[3] b3[3]

b4[0] b5[0] b6[0] b7[0]

b4[1] b5[1] b6[1] b7[1]

b4[2] b5[2] b6[2] b7[2]

b4[3] b5[3] b6[3] b7[3]

Figure 4: Column-wise arrangement for p = 8 arrays of size n = 4 each

cannot send a new memory access request until the previous memory access request is completed.
Hence, if a thread sends a memory access request, it must wait at least l time units to send a new
memory access request.

We will show that the bulk execution of an oblivious sequential algorithm can be done efficiently
on the UMM. Without loss of generality, we can assume that an oblivious sequential algorithm works
on a 1-dimensional array b of size n. If p threads on the UMM perform the bulk execution, the global
memory stores p arrays of b. We use column-wise arrangement to allocate p arrays as illustrated in
Figure 4. More specifically, let bj [i] denote the i-th element of b for thread j. Each bj [i] is allocated
in address j · p + i. If all threads execute a same oblivious algorithm, then they access the same
address at each time unit. In other words, if a sequential algorithm accesses index i at some time
unit, p threads access b0[i], b1[i], . . . , bp−1[i] at the same time. Clearly, they are arranged in addresses
i · p + 0, i · p + 1, . . . , i · p + (p − 1) in the same row of the 2-dimensional array. Hence, they are in
consecutive addresses and memory access by p threads is always coalesced.

Let us evaluate the computing time for the bulk execution of an oblivious sequential algorithm
on the UMM. Let t be the running time of an oblivious sequential algorithm and p be the number
of inputs and the number of threads. For each memory access of the obvious sequential algorithm p
threads performs coalesced memory access. Since they are in p

w address groups, it can be completed
in p

w + l− 1 time units. Since the oblivious sequential algorithm performs at most t memory access

operations, p threads on the UMM terminates in (p
w + l − 1) · t = O(ptw + lt) time units. Thus we

have,

Lemma 3. The bulk execution of an oblivious sequential algorithm runs O(ptw + lt) time units using
p threads on the UMM with width w and latency l, where t is the running time of the corresponding
oblivious sequential algorithm.

In our previous paper [23], we have proved that Lemma 3 is time-optimal.
Let us define semi-obliviousness of a sequential algorithm. Suppose that a sequential algorithm

runs t time units. A sequential algorithm is semi-oblivious with parameter γ (0 ≤ γ ≤ 1) if it is
oblivious in (1 − γ)t time units. More specifically, it an address accessed at each of (1 − γ)t time
units out of t time units is independent of the input. Hence, an address accessed may be different
in γt time units. Clearly, it is obvious if γ = 0.

We will prove that the bulk execution of a semi-oblivious algorithm with parameter γ can be
implemented efficiently in the UMM if γ ≤ O(1

w). Again, let t be the running time of an oblivious
sequential algorithm and p be the number of inputs and the number of threads. From Lemma 3,
the bulk execution of an oblivious sequential algorithm runs O(ptw + lt) time units on the UMM
with width w and latency l. Suppose that γt memory access operations out of t operations is not
oblivious. If this semi-oblivious algorithm is implemented on the UMM, each of such memory access
operations occupies at most p pipeline registers. Hence, the bulk execution of a semi-oblivious
sequential algorithm runs in O(ptw + lt+ ptγ) time units. Thus, we have,

Lemma 4. The bulk execution of a semi-oblivious sequential algorithm with parameter O(1
w) runs

O(ptw + lt) time units using p threads on the UMM with width w and latency l, where t is the running
time of the corresponding semi-oblivious sequential algorithm.

56

International Journal of Networking and Computing

Regarding performance analysis with the UMM, in our previous papers [7, 23], we showed the
performance analysis on the theoretical model including the UMM. Also, its correctness has also
been shown by actually verifying the performance evaluation with the GPU implementations for
various problems. Therefore, the performance analysis on the UMM is reasonable for the global
memory access. Moreover, since the latency of the global memory is 200 to 400 clock cycles [15],
if a global memory access is not coalesced, that is, several memory access requests are issued, the
number of clock cycles for the access becomes constant times more, but the performance is affected
much unless the number of memory access instructions is extremely small. Therefore, the number
of global memory requests is one of the important factors for the performance analysis.

6 Oblivious sequential algorithms with synchronization

The main purpose of this section is to define a sequential algorithm with synchronization. We also
show that bulk execution of a sequential algorithm with synchronization runs in the UMM efficiently
if it is oblivious.

A sequential algorithm with synchronization can execute a synchronize instruction sync. This
instruction is something like NOP (No Operation) instruction that does nothing. However, when
the bulk execution of a sequential algorithm with synchronization is performed in parallel, this
instruction is used for barrier synchronization. In other words, if a thread executes sync instruction,
it is stalled until all the other threads execute sync instruction.

We can think that an execution of a sequential algorithm with synchronization is separated into
sub-executions by sync instruction. We say that a sequential algorithm with synchronization is
oblivious if every sub-execution is oblivious. Since the definition of obliviousness for a sequential
algorithm with synchronization is hard to understand, we explain it using an example.

Let us consider the row-wise OR problem defined as follows. Suppose that we have an integer
matrix a of size n× n. We want to compute each element b[i] of an array b such that

b[i] = 0 if a[i][0] = a[i][1] = · · · = a[i][n− 1] = 0,

= 1 otherwise.

A straightforward algorithm can compute all elements in array b as follows:

[Straightforward row-wise OR algorithm]
for i← 0 to n− 1 do
b[i]← 0;
for j ← 0 to n− 1 do
if a[i][j] ̸= 0 then
b[i]← 1;
exit for-loop;

The algorithm first reads a[0][0]. If it is 0 then it reads a[0][1]. Otherwise, it reads a[1][0]. Hence,
this straightforward algorithm is not oblivious. On the other hand, we can modify it to be oblivious
using sync instruction as follows:

[Row-wise OR algorithm with sync]
for i← 0 to n− 1 do
b[i]← 0;
for j ← 0 to n− 1 do
if a[i][j] ̸= 0 then
b[i]← 1;
exit for-loop;

else NOP;
sync;

57

Bulk execution of Euclidean algorithms on the CUDA-enabled GPU

Clearly, this algorithm performs n sync instructions. Hence, its execution is partitioned in n sub-
executions, each of which computes the value of each b[i]. In each i-th sub-execution, a[i][0], a[i][1], . . .
are read until the value is non-zero. Thus, the j-th iteration of i-th sub-execution reads a[i][j] or
does not perform read operation, and so this algorithm is oblivious.

Let us evaluate bulk execution of this sequential algorithm with synchronization. Suppose that
p threads execute this algorithm on the UMM independently, that is, each of p threads executes
this algorithm in parallel, In the worst case, all values are zero and all elements are read. Hence,
each thread reads n2 elements and the total running time of the bulk execution on the UMM is

(p
w + l − 1) · n2 = O(pn

2

w + ln2). If all elements a[i][0] (0 ≤ i ≤ n − 1) are non-zero, only these
elements are read and each thread reads n elements. If this is the case, the total running time is
(p
w + l − 1) · n = O(pnw + ln).
We assume that each element of matrix is a d-bit unsigned integer and the value is selected from

[0, 2d − 1] uniformly at random. We will show that the total running time is expected O(pnw + ln)
under this assumption. Recall that a warp of w threads perform memory access at the same time.
First, each of w threads in the first warp reads a[0][0] of the input. Since it is zero with probability
1
2d
, at least one of all w threads reads zero values with probability at most w

2d
. This probability is

at most 1
2 if w ≤ 2d+1. Since the number of threads in a warp of CUDA-enabled GPUs is 32, and

32-bit integers are used, it makes sense to set w = d = 32. Hence, from practical point of view, this
condition is satisfied. If this is the case, one or more threads read a[0][1] with probability at most 1

2 .
Further, we can say that some threads read a[0][2] with probability at most 1

22 . In general, a[0][j] is
read with probability at most 1

2j . Thus, a warp performs j reading rounds with probability at most
1
2j , and so, the expected number of reading rounds is at most

n−1∑
j=0

j

2j
= O(1).

Hence, each thread performs expected O(1) memory access operations for each sub-execution and
expected O(n) memory access operations for all n sub-executions. Since the algorithm is oblivious,
the total running time is O(pnw + ln). Consequently, we have

Lemma 5. The bulk execution of the row-wise OR algorithm with sync for an n × n matrix, each
element of which is a d-bit unsigned integer and the value is selected from [0, 2d − 1] uniformly at

random, using p threads on the UMM runs in O(pn
2

w + ln2) time units and in expected O(pnw + ln)
time units.

7 Semi-oblivious implementation of the Approximate Eu-
clidean algorithm

This section shows that the Approximate Euclidean algorithm can be implemented as an oblivious
sequential algorithm.

We assume that all numbers are stored in d-bit words. Hence, a number with s bits is stored in
s
d words. For example, a 512-bit number is stored in sixteen 32-bit words. Since the Approximate
Euclidean algorithm operates large numbers stored in multiple words, naive implementations per-
form a lot of redundant memory access operations. We will show how we implement fundamental
operations used in the Binary Euclidean algorithm, the Fast Binary Euclidean algorithm, and the
Approximate Euclidean algorithm. We will show that, with high probability, 3 s

d + O(1) memory
access operations are performed in each iteration if X and Y with s bits are stored in d-bit words.
More specifically, each iteration essentially performs three operations, reading from X, reading from
Y , and writing in X, each of which involves s

d memory access operations. Also, additional O(1)
reading operations are performed for X and Y .

Figure 5 illustrates how X and Y are implemented. Two s-bit numbers X and Y are stored in
arrays of s

d words. Two registers are used to store pointers that specify arrays for X and Y . Also,
the values of lX , lY , α, and β are stored in registers.

58

International Journal of Networking and Computing

11 · · · 000 · · · 101 · · · 000 · · · 1
X

00 · · · 001 · · · 101 · · · 100 · · · 1
Y

register

lX

lY

4

3

x1 x2 x3 x4

y1 y2 y3

βα

7 0

Figure 5: Implementation of X and Y

We will show that, the Approximate Euclidean algorithm can be implemented as a semi-oblivious
algorithm with sync. For this purpose we show how each statement of the Approximate Euclidean
algorithm can be implemented. We assume that synchronization is executed after each statement.

approx(X,Y): The value of approx(X,Y) can be determined by those of lX , lY , x1, x2, y1, and
y2. Hence, approx(X,Y) accesses at most four words x1, x2, y1 and y2 in the memory. Since
addresses of these four words may change, the computation of approx(X,Y) is not oblivious.

X ←rshift(X − Y · α): This operation can also be done by reading words of X and Y and
writing words of X from the least significant word. For example, this operation for X with
four 32-bit words x1, x2, x3, x4 and Y for three 32-bit words y1, y2, y3 as illustrated in Figure 5
can be performed using a 64-bit temporary register variable z and a 16-bit temporary register
variable r as follows:

z ← x4 + (x3 << 32)− y3 · α
r ← the number of consecutive 0 bits in z from the LSB
x4 ← (z >> r)&0xFFFFFFFF
z ← (z >> 32) + (x2 << 32)− y2 · α
x3 ← (z >> r)&0xFFFFFFFF
z ← (z >> 32) + (x1 << 32)− y1 · α
x2 ← (z >> r)&0xFFFFFFFF
x1 ← z >> (r + 32)

Clearly, each word in X and Y is read once, each word in X is written once. Note that this
algorithm works only if r ≤ 32. The reader should have no difficulty to modify this algorithm
that works correctly even if r > 32. Since the memory access are performed from the LSB of
X and Y , it is oblivious.

X ←rshift(X − Y · α ·Dβ + Y): This can be done in a similar way to “X ←rshift(X−Y ·α)”.
Note that we need to perform additional reading operations from Y to compute “+Y .”

X < Y : If lX < lY then X < Y is true and if lX > lY then X < Y is false. Thus, access to the
memory is not necessary if lX ̸= lY . If lX = lY then we need to compare the values of X and
Y from the most significant word. More specifically, x1 and y1 are read from the memory. If
x1 < y1 then X < Y is true and if x1 > y1 then X < Y is false. If x1 = y1 then x2 and
y2 are read from the memory and they are compared in the same way. If x2 and y2 takes
32-bit random values, then x2 ̸= y2 with probability 1− 2−32. Hence, the result of X < Y can
be determined without reading x3 and y3 with very high probability. If this is the case, only
four words x1, x2, y1 and y2 in the memory are accessed. Consequently, this condition can be
determined by accessing these four words with probability 1−2−32. Also, by a similar analysis
as Lemma 5, we can prove that expected O(1) memory access operations are performed. Since
the position of each of these four words may change, the memory access may not be oblivious.

59

Bulk execution of Euclidean algorithms on the CUDA-enabled GPU

Table 6: The performance of the Euclidean algorithms, (C) the Binary Euclidean algorithm, (D)
the Fast Binary Euclidean algorithm, (E) the Approximate Euclidean algorithm, and (F) the Ap-
proximate Euclidean algorithm with PTX: one GCD computing time in microseconds

1024 2048 4096 8192 16384
(C) Binary Euclidean algorithm 82.0 282 1050 3990 15500

CPU (D) Fast Binary Euclidean algorithm 49.9 166 607 2330 8800
(E) Approximate Euclidean algorithm 43.7 140 494 1830 7090
(C) Binary Euclidean algorithm 5.34 23.2 90.2 400 1680

GPU (D) Fast Binary Euclidean algorithm 1.02 4.13 15.7 64.5 257
(E) Approximate Euclidean algorithm 0.530 2.21 8.50 34.8 138
(F) Approximate Euclidean algorithm with PTX 0.482 1.96 7.85 30.5 120
(C) Binary Euclidean algorithm 15.3 12.2 11.6 9.98 9.23

CPU
GPU (D) Fast Binary Euclidean algorithm 48.8 40.3 38.6 36.1 34.2

(E) Approximate Euclidean algorithm 82.5 63.3 58.2 52.6 51.2
(F) Approximate Euclidean algorithm with PTX 90.6 71.6 63.0 60.1 59.1

swap(X,Y): This can be done by exchanging the pointer variables for X and Y . Hence, swap(X,Y)
can be done by access to registers.

We can see that X ←rshift(X − Y ·α) can be done in 3 s
d memory access operations, reading from

Y , reading from X, and writing in X. Similarly, X ←rshift(X − Y · α · Dβ + Y) can be done
in 4 s

d memory access operations, because additional s
d reading operations are necessary to compute

“+Y .” The other operations performs at most O(1) non-oblivious memory access with very high
probability. Hence, the Approximate Euclidean algorithm is semi-oblivious with parameter d

s with

high probability. Thus, if d
s ≤

1
w , that is, s ≥ wd, then the Approximate Euclidean algorithm runs on

the UMM efficiently. If we use 32-bit unsigned integers on CUDA-enabled GPUs, then w = d = 32.
Thus, this condition is satisfied if s ≥ 1024.

8 Experimental results

This section shows the running time of the Euclidean algorithms. We have used Xeon X7460
(2.66GHz) CPU for executing the sequential Euclidean algorithms and GeForce GTX Titan X GPU
for evaluating the CUDA implementations. In our CUDA implementations, we have used CUDA
blocks with 64 threads in which each thread computes GCDs of a pair of two large numbers. We
have used local memory arranged in the global memory to store X and Y .

Table 7 shows the time for computing one GCD in microseconds when pairs of two randomly
generated s-bit unsigned odd integers for s = 1024, 2048, 4096, 8192, and 16384. We have generated
integers with 2G bytes totally for each s, and evaluated the running time on the GPU. For example,
when s = 1024, we have generated 8 Mega pairs of 1024-bit integers. Basically, we use 32-bit unsigned
integers to store large unsigned integers. When we compute the GCD using PTX instructions, we
use 64-bit unsigned integers to compute rshift(X − Y · α) and rshift(X − Y · α ·Dβ + Y).

From the table, we can see that the Approximate Euclidean algorithm is faster than the others.
Since the Euclidean algorithms are semi-oblivious, the speedup ratio CPU/GPU is enough large.
However, the execution time ratio CPU/GPU of the Binary Euclidean algorithm is rather smaller
than the others. This is due to the branch divergence of a CUDA C program for the Binary Euclidean
algorithm. Since CUDA architecture is based on SIMT (Single Instruction Multiple Threads), all
threads in a warp must execute the same instruction in each clock cycle. Hence, if CUDA C program
has a branch using an if-else statement, then the instructions for the true case are executed first
and then those for the false case are executed. Note that, if all threads execute the instructions
for the same case, those for the other case are not executed. The Binary Euclidean algorithm has

60

International Journal of Networking and Computing

a if-else if-else statement to select one of the three cases: (X,Y) is (even, odd), (odd, even), and
(odd, odd). Since the instructions for these three cases are executed sequentially, and the branch
divergence degenerates the performance of the Binary Euclidean algorithm. On the other hand,
we can ignore the branch divergence of the Approximate Euclidean algorithm. The Approximate
Euclidean algorithm has if-else statement to select two cases: β = 0 or β > 0, where β is the
value computed by function approx. However, β > 0 with probability less than 10−8 from Table 5.
Hence all threads executes instructions for the case of β = 0 with very high probability, and those
for β > 0 are not executed. Further, the 64-bit division operation for function approx and 32-
bit multiplications for rshift(X − Y · α) takes a lot of time on the CPU. On the other hand, on
the GPU, time for these operations are hidden by large memory access latency. Hence, the GPU
implementation for the Approximate Euclidean algorithm achieves much higher speedup ratio over
the CPU. Also, we can see that the GCD computation can be about 10% faster if we use 64-bit
PTX instructions.

We have also evaluated the difference of the performance between oblivious and semi-oblivious
executions for the GCD computation. To evaluate the oblivious execution, we have executed the
GPU implementation such that every thread performs the identical GCD computation using common
two numbers instead of the input used in Table 6. Namely, all instructions and addresses of memory
access executed at the same time within a warp are identical. Table 7 shows the running time of
the Approximate Euclidean algorithm with PTX for oblivious and semi-oblivious executions. The
oblivious execution runs at most 31% faster than the semi-oblivious one.

Table 7: The performance of the Approximate Euclidean algorithm with PTX for semi-oblivious
and oblivious executions on the GPU: one GCD computing time in microseconds

1024 2048 4096 8192 16384
semi-oblivious 0.482 1.96 7.85 30.5 120

oblivious 0.369 1.67 6.58 26.2 103
semi-oblivious

oblivious 1.31 1.17 1.19 1.16 1.17

9 Conclusion

We have presented a new Euclidean algorithm for computing the GCD of all pairs of encryption
moduli. The idea of our new Euclidean algorithm that we call the Approximate Euclidean algorithm
is to compute an approximation of quotient by just one 64-bit division and to use it for reducing
the number of iterations of the Euclidean algorithm. We also present an implementation of the
Approximate Euclidean algorithm optimized for CUDA-enabled GPUs. The experimental results
show that our implementation for 1024-bit GCD on GeForce GTX Titan X runs about 90 times
faster than the Intel Xeon CPU implementation.

References

[1] Daniel J. Bernstein. Fast multiplication and its applications. Algorithmic Number Theory,
44:325–384, 2008.

[2] Noriyuki Fujimoto. High throughput multiple-precision GCD on the CUDA architecture. In
Proc. of International Symposium on Signal Processing and Information Technology, pages 507–
512, Dec. 2009.

[3] Toru Fujita, Koji Nakano, and Yasuaki Ito. Bulk GCD computation using a GPU to break weak
RSA keys. In Proc. of International Parallel and Distributed Processing Symposium Workshops,
pages 385–394, May 2015.

61

Bulk execution of Euclidean algorithms on the CUDA-enabled GPU

[4] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. Mining your Ps
and Qs: Detection of widespread weak keys in network devices. In Proc. of the 21st USENIX
Security Symposium, page 35, Aug. 2012.

[5] Wen-mei W. Hwu. GPU Computing Gems Emerald Edition. Morgan Kaufmann, 2011.

[6] Akihiko Kasagi, Koji Nakano, and Yasuaki Ito. Offline permutation algorithms on the discrete
memory machine with performance evaluation on the GPU. IEICE Transactions on Information
and Systems, Vol. E96-D(12):2617–2625, Dec. 2013.

[7] Akihiko Kasagi, Koji Nakano, and Yasuaki Ito. An optimal offline permutation algorithm on
the hierarchical memory machine, with the GPU implementation. In Proc. of International
Conference on Parallel Processing (ICPP), pages 1–10, Oct. 2013.

[8] Donald Ervin Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms. Addison-Wesley, 1997.

[9] Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos, Thorsten Kleinjung,
and Christophe Wachter. Ron was wrong, Whit is right. Cryptology ePrint Archive, Report
2012/064, 2012.

[10] Duhu Man, Kenji Uda, Hironobu Ueyama, Yasuaki Ito, and Koji Nakano. Implementations of
a parallel algorithm for computing Euclidean distance map in multicore processors and GPUs.
International Journal of Networking and Computing, 1(2):260–276, July 2011.

[11] Koji Nakano. Optimal parallel algorithms for computing the sum, the prefix-sums, and the
summed area table on the memory machine models. IEICE Trans. on Information and Systems,
E96-D(12):2626–2634, 2013.

[12] Koji Nakano. Sequential memory access on the unified memory machine with application to the
dynamic programming. In Proc. of International Symposium on Computing and Networking,
pages 85–94, Dec. 2013.

[13] Koji Nakano. Simple memory machine models for GPUs. International Journal of Parallel,
Emergent and Distributed Systems, 29(1):17–37, 2014.

[14] NVIDIA Corporation. NVIDIA CUDA C best practice guide version 3.1, 2010.

[15] NVIDIA Corporation. NVIDIA CUDA C programming guide version 7.0, Mar 2015.

[16] NVIDIA Corporation. Parallel thread execution ISA ver4.2, Mar 2015.

[17] Kohei Ogawa, Yasuaki Ito, and Koji Nakano. Efficient Canny edge detection using a GPU.
In Proc. of International Conference on Networking and Computing, pages 279–280. IEEE CS
Press, Nov. 2010.

[18] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21:120 – 126, 1978.

[19] Kerry Scharfglass, Darrin Weng, Joseph White, and Christopher Lupo. Breaking weak 1024-bit
RSA keys with CUDA. In Proc. of Internatinal Conference of Breaking weak 1024-bit RSA keys
with CUDA, pages 207 – 212, Dec. 2012.

[20] Josef Stein. Computational problems associated with racah algebra. Journal of Computational
Physics, 1(3), Feb. 1967.

[21] Daisuke Takafuji, Koji Nakano, and Yasuaki Ito. A CUDA C program generator for bulk
execution of a sequential algorithm. In Proc. of International Conference on Algorithms and
Architectures for Parallel Processing, pages 178–191, Aug. 2014.

62

International Journal of Networking and Computing

[22] Yuji Takeuchi, Daisuke Takafuji, Yasuaki Ito, and Koji Nakano. Ascii art generation using the
local exhaustive search on the GPU. In Proc. of International Symposium on Computing and
Networking, pages 194–200, Dec. 2013.

[23] Kazuya Tani, Daisuke Takafuji, Koji Nakano, and Yasuaki Ito. Bulk execution of oblivious
algorithms on the unified memory machine, with GPU implementation. In Proc. of International
Parallel and Distributed Processing Symposium Workshops, pages 586–595, May 2014.

[24] Akihiro Uchida, Yasuaki Ito, and Koji Nakano. Fast and accurate template matching using
pixel rearrangement on the GPU. In Proc. of International Conference on Networking and
Computing, pages 153–159. IEEE CS Press, Dec. 2011.

[25] Akihiro Uchida, Yasuaki Ito, and Koji Nakano. An efficient GPU implementation of ant colony
optimization for the traveling salesman problem. In Proc. of International Conference on Net-
working and Computing, pages 94–102. IEEE CS Press, Dec. 2012.

[26] Joseph R. White. PARIS: A PARALLEL RSA-PRIME INSPECTION TOOL. PhD thesis,
California Polytechnic State University - San Luis Obispo, June 2013.

63

