
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 5, Number 2, pages 373–402, July 2015

Software Model Checking of UDP-based Distributed Applications

Nazim Sebih, Masami Hagiya

The University of Tokyo
Tokyo, Japan

Franz Weitl, Mitsuharu Yamamoto

Chiba University
Chiba, Japan

Cyrille Artho

AIST/RISEC
Amagasaki, Japan

Yoshinori Tanabe

Tsurumi University
Yokohama, Japan

Received: February 13, 2015
Revised: April 30, 2015
Accepted: June 1, 2015

Communicated by Hiroyuki Sato

Abstract

An extension to the software model checker Java Pathfinder for verifying networked appli-
cations using the User Datagram Protocol (UDP) is presented.

UDP maximizes performance by omitting flow control and connection handling. For instance,
media-streaming services often use UDP to reduce delay and jitter. However, because UDP is
unreliable (packets are subject to loss, duplication, and reordering), verification of UDP-based
applications becomes an issue. Even though unreliable behavior occurs only rarely during
testing, it often appears in a production environment due to a larger number of concurrent
network accesses.

Our tool systematically tests UDP-based applications by producing packet loss, duplication,
and reordering for each packet. We have evaluated the performance of our tool in a multi-
threaded client/server application and detected incorrectly handled packet duplicates in a file
transfer client.

Keywords: Software Model Checking, Java Pathfinder, Testing of Distributed Systems, User
Datagram Protocol, Unreliable Network I/O

373

Software Model Checking of UDP-based Distributed Applications

1 Introduction

Modern software often involves both multi-threading and network communication based on TCP
(Transmission Control Protocol) or UDP (User Datagram Protocol). Testing such systems is com-
plex due to non-determinism in thread scheduling and in messages transmitted across the network.
Software model checking ensures that a program conforms to formal properties by exhaustive explo-
ration of its state space, given enough memory and time.

In contrast to TCP, UDP is neither connection-oriented nor reliable: Connections between com-
municating peers are not established and terminated explicitly, and data packets sent by UDP may
get lost, duplicated, or arrive at the destination in a different order [12].

Despite its unreliability, UDP is adopted for a broad range of safety- and mission-critical ap-
plications and contributes significantly to the Internet traffic volume [45]. Its lower latency and
higher achievable throughput motivate its adoption for application-layer protocols such DNS [29]
and DHCP [11]. Particularly security-sensitive applications are authentication and password services
such as Kerberos [28], remote desktop access [19, 31], and network management protocols such as
SNMP [26]. Virtual private networks (VPN) use UDP as an underlying transport protocol to avoid
redundant layers of flow control when tunneling TCP connections [17]. Multicast protocols such
as IPTV [7] or the Starbust Multicast File Transfer Protocol (MFTP) [34] depend on UDP since
TCP does not support connections with one source and multiple destinations. Real-time protocols
such as RTP/RTCP [18, 36], used for telephony and teleconference applications for instance, build
preferably on UDP because of its more predictable delay and jitter. Recent mission-critical real-
time applications include smart meters [14] used for optimizing the consumption and distribution of
electrical power. Highly scalable middleware uses UDP for performance optimization. For instance,
the distributed coordination system Apache ZooKeeper [20] includes a UDP-based version of leader
election which is the core algorithm for recovering from failures. Recently, Google is pushing the new
UDP-based protocol QUIC [35] to be adopted in future versions of HTTP. It has shown potential
to speed up web applications beyond HTTP/2 and is already supported by Google services and the
Chrome browser.

Each of these applications must be dependable. Developing dependable UDP-based systems
is difficult because an unreliable protocol places the responsibility on the developer to ensure a
sufficient level of data integrity by implementing a suitable application-level protocol. Specialized
application-level protocols must be tested thoroughly since their implementation cannot be expected
to have the same level of maturity as widely used implementations of TCP.

In local test environments with limited network traffic, problematic behavior such as packet loss
can hardly be observed and reproduced. In test environments, UDP often behaves like TCP: All
packets are received exactly once and arrive in the same order in which they have been sent. We
call this the reliable behavior of UDP.

We consider the following cases of unreliable behavior of UDP, summarized under the term packet
perturbation:

1. Loss: a packet does not arrive at its destination;

2. Duplication: a packet arrives more than once;

3. Reordering: packets arrive in a different order.

Testing a UDP-based application requires checking its behavior for both the reliable and unreliable
cases of UDP input/output (I/O). Existing approaches [13, 23, 33, 40] generate unreliable UDP
behavior with a configurable stochastic distribution. However, it is hard to guarantee coverage
and to reproduce rarely occurring errors by randomly generating unreliable UDP behavior. To
ensure a desired level of coverage, combinations of unreliable UDP behavior need to be generated
systematically. For reproducibility, control over the outcome of UDP-based I/O is necessary.

We propose the use of software model checking for systematically executing the system under test
(SUT) for the different possible outcomes of UDP I/O operations in a reproducible and configurable
way (systematic generation of packet perturbation). We implement our approach using the software
model checker Java Pathfinder [42] and its extension net-iocache [22] for distributed systems.

374

International Journal of Networking and Computing

Considering both the reliable and (combinations of) unreliable behaviors for each UDP I/O
operation often leads to an exponential growth of the state space in the number of exchanged
messages. To ensure scalability, we provide means for restricting the simulation of UDP behavior in
two dimensions: 1) to certain kinds of unreliable behavior and 2) to certain locations of interest in
the program code.[37]

This article is an extended version of previous work [37]. Its contributions are:

Method: We propose software model checking as a suitable method for testing the behavior of an
SUT for possible outcomes of UDP I/O in a systematic and reproducible way.

Implementation: We add support of UDP to the JPF extension net-iocache, including the con-
figurable simulation of UDP’s unreliable behavior by generating packet perturbation.

Evaluation: We compare the performance of our tool to previously implemented TCP-based bench-
mark scenarios and demonstrate its usefulness for finding defects in the application-level com-
munication protocol of a client/server application for file transfer.

This article adds the following to previously published results [37]: 1) formal description of UDP’s
unreliable behavior which defines the output of the proposed algorithms for generating packet per-
turbation, 2) additional experimental results obtained with different configurations of packet per-
turbation on two distributed applications.

This article is structured as follows. We give some background on software model checking with
JPF and its extension net-iocache for networked systems, as well as UDP in Section 2. Section 3
formalizes the concept of unreliable UDP transmissions, presents the algorithms that generates them,
and explains their implementation in net-iocache. We report on experimental results in Section 4
and discuss related work in Section 5 before concluding the article in Section 6.

2 Background

In this section, we introduce the concept of software model checking through Java Pathfinder (JPF)
and its extension for network applications net-iocache, and explain how the UDP protocol is sup-
ported by the Java API.

2.1 Software Model Checking with Java Pathfinder

Our implementation extends JPF [15, 42], an explicit state software model checker for Java bytecode
which explores multiple outcomes due to non-determinism such as thread interleaving and random
input data.

application classes
myServer.class, …

JPF model classes
java.net.Socket, …

JPF Virtual Machine
jpf.jar

SUT

JPF

Java Virtual Machine
java.exe

Java API classes
java.net.Socket, …

JVM

host operating system
e.g., Windows

Host

system libraries
winsock.dll, …

runs on

runs on

runs on

JPF native peer classes

Figure 1: Levels of execution when model checking an SUT (system under test) with JPF (Java
Pathfinder).

Figure 1 shows the components of JPF. JPF is a custom Java Virtual Machine written in Java,
i. e. , it runs on top of a host Java Virtual Machine (JVM). The application verified by JPF is

375

Software Model Checking of UDP-based Distributed Applications

called the system under test (SUT). In contrast to a standard JVM, JPF executes the SUT for all
outcomes of non-deterministic operations such as thread scheduling, random numbers, or certain
I/O operations. To cover all combinations of non-deterministic outcomes, JPF backtracks the SUT
to previous states with unexplored choices and creates a new execution branch for each choice. If
JPF is able to find a state that violates a property, it shows the execution trace from the initial to
the error state. The properties to be verified against the SUT can be generic properties such as data
races and deadlocks, or user-defined assertions in the SUT. Because JPF targets Java bytecode, it
can be applied to any language that can be compiled to bytecode (e. g., Scala, C/C++, Ruby).

JPF cannot backtrack native code. Such code may execute system calls such as I/O that have
side effects on the host environment. In that case, model classes, which simulate the original API,
need to be provided; They must be entirely written in Java. Part of our effort to support verification
of UDP-based distributed applications was to implement a model class for DatagramSocket. JPF
allows model classes to invoke methods of so called native peer classes that run on the host Java
Virtual Machine and thus have access to the standard Java API. This way, the execution of methods
with native code such as network I/O can be delegated from the JPF to the JVM execution level
which in turn may interface with the host operating system to perform the operation. Figure 1
summarizes the different levels of execution.

2.2 Cache-based Model Checking of Networked Systems with net-iocache

Our approach builds on net-iocache, an extension to JPF that enables it to verify distributed sys-
tems [4, 22]. For scalability, net-iocache verifies one process at a time (the SUT), while the other
processes are executed as remote peers on the host JVM (see Figure 2).

Figure 2: Tool net-iocache intercepts the communication between the SUT executed by JPF and
remote peers.

By tracking the state of all objects involved in network communication (sockets, I/O streams,
network ports) and caching the result of I/O operations, net-iocache synchronizes the state of remote
peers with the SUT if JPF backtracked its state. For model checking of UDP applications, we added
support of datagram sockets to net-iocache as described in Section 3.3.1.

2.3 UDP in Java

Java supports UDP through the java.net package. The following two classes provide the basic
functionality:

• DatagramPacket contains the data and the remote destination (IP address and port) the packet
will be sent to or has been received from.

• DatagramSocket handles the transmission of datagram packets. A datagram socket can be
connected, restricting the exchange of datagram packets to a dedicated destination. The
connection semantics is however different from TCP sockets in that no communication channel
over the network is maintained.

Note that, in case a datagram packet arrives at its destination, lower-level protocols ensure that its
data is unmodified.

376

International Journal of Networking and Computing

3 Simulation of Unreliable UDP in net-iocache

The proposed approach for software model checking UDP-based applications with systematic gen-
eration of packet loss, duplication, and reordering consists of the following parts:

1. Formal model of unreliable UDP transmissions with packet loss, duplication, and reordering.

2. Algorithms for exhaustively generating possible UDP transmission outcomes, based on the
formal model and JPF’s choice generator mechanism.

3. Extension of JPF towards UDP support and implementation of the algorithms simulating
unreliable UDP behavior.

3.1 Formal Model of Unreliable UDP Transmissions

The formal model presented in this section clarifies our assumptions and defines the output of the
algorithms for generating packet perturbation.

Example 1 (UDP Transmission Outcomes).
Consider a UDP-based network communication where a server sends subsequently two UDP

packets (p, q) to a client. Each packet may be subject to perturbation, i. e. , it may be lost, duplicated
and/or reordered. The following lists the packet sequences the client could possibly receive, assuming
that duplication occurs at most once per packet:

() (p) (p, p) (p, p, q) (p, p, q, q)
(q) (q, q) (q, q, p) (q, q, p, p)

(p, q) (p, q, p) (p, q, p, q)
(q, p) (q, p, q) (q, p, q, p)

(q, p, p) (p, q, q, p)
(p, q, q) (q, p, p, q)

Our objective is to generate such non-deterministic UDP I/O outcomes in net-iocache and verify
the SUT against them.

To exclude an infinite number of UDP transmission outcomes for a transmitted packet sequence,
we limit the number of times each packet may be duplicated in our model. For instance, we assume
that each packet is not duplicated more than once. Under this assumption, each transmitted packet
may either be (1) lost, (2) transmitted exactly once, or (3) duplicated and transmitted twice, re-
sulting in 3 cases per packet and 3n cases for n packets. Reordering of n packets leads to n! cases.
Hence testing an SUT against all UDP transmission outcomes may not be feasible for larger number
of packets.

To control complexity, it is desirable to restrict the generated transmission outcomes to cases of
perturbation that match the test goals and properties of the network environment. We therefore
identify restrictions on packet loss, duplication, and reordering and formally define the set of UDP
transmission outcomes w. r. t. these restrictions which are generated by net-iocache. This systematic
and exhaustive generation of non-deterministic UDP I/O w. r. t. constraints on packet perturbation
distinguishes our work from other work [13], applying stochastic methods for the generation of
unreliable UDP behavior.

3.1.1 Modeling UDP Behavior

For our model of UDP transmissions, we consider two endpoints where one endpoint, the sender,
sends a sequence of n distinct UDP packets to the receiver (Figure 3).

We model the network as an unreliable channel with limited capacity, i. e. , it can hold at most
c packets at a given time. Figure 3 depicts the scenario where the first c of n packets to be sent
have already been put onto the network but not yet delivered to the receiver. In this scenario, any
further packet forwarded to the network is lost unless one of the c packets on the network has been
delivered to the receiver or is lost. We call the sequence of packets (p1, ..., pn) forwarded by the

377

Software Model Checking of UDP-based Distributed Applications

Network with Capacity c

Sender

UDP Socket

pc+1

...

pn

Receiver

UDP Socket

pc

pc-1 p2

p1

Figure 3: Transmission of a sequence of n UDP packets on a network with capacity c.

sender to the network dispatch while delivery denominates the sequence of packets arriving at the
UDP socket of the receiver. The unreliability of the channel causes differences between dispatches
and their deliveries: In the delivered sequence, packets may appear in an order different to that
of the dispatched sequence, some packets may be missing and others may appear more than once.
However, we assume that lower-level network protocols ensure the integrity of each individual packet:
If a packet is delivered its content is unmodified. In total, our assumptions regarding the behavior
of the network are:

• Sequential dispatch/delivery: In one execution step, the UDP socket of the sender dispatches
at most one packet to the network and at most one packet is delivered to the UDP socket of
the receiver;

• Delay: A packet is not dispatched and delivered at the same time;

• Progress: Every packet on the network is eventually not on the network anymore (although
not necessary delivered, see below);

• Finite capacity: At any time, there are at most c ≥ 1 packets on the network;

• Packet integrity: Only packets are delivered to the receiver which have been dispatched by the
sender;

• Loss and duplication: Each packet on the network is delivered arbitrarily many times, including
0;

• Unordered delivery: Any of the packets on the network at a certain time may be delivered
next.

These assumptions represent a worst-case scenario, allowing a maximum of packet perturba-
tion. In real networks, the number of duplicates and reordering may be restricted, for instance, by
limitations on the time a single packet can remain on the network.

In our model, the set of possible deliveries for a given dispatched sequence of packets depends
on the network capacity and the number of duplicates introduced by the network. In the sequel, we
define our notion of UDP transmissions formally.

3.1.2 Formalization of UDP Transmissions

We denote the set of natural numbers including 0 as N. Furthermore, N1 =def N \ {0} denotes the
set of positive natural numbers; [n,m] =def {i ∈ N | n ≤ i ≤ m} denotes a closed interval in N.

Definition 1 (Packet, Packet Sequence).

• P denotes an infinite set of packets.

• Pn with n ∈ N denotes the set of packet sequences of length n. Elements of Pn are denoted
as (p1, ..., pn) or as (p)n. “()” denotes the empty sequence for n = 0.

378

International Journal of Networking and Computing

• P<∞ =def

⋃
n∈N Pn is the set of finite packet sequences.

Definition 2 (Dispatch, Delivery, Dispatch Order).
Let (p)n ∈ P<∞ be a packet sequence of length n. Then

• (p)n is a dispatch iff pi = pj implies i = j for all i, j ∈ [1, n].

• (q)m ∈ P<∞ is a delivery of a dispatch (p)n iff for each j ∈ [1,m] there is i ∈ [1, n] such that
qj = pi.

• D(p)n =def {(q)m ∈ P<∞ | ∀j ∈ [1,m] ∃i ∈ [1, n] : qj = pi)} denotes the set of deliveries of a
dispatch (p)n.

• The dispatch order of packets in a dispatch (p)n is:
pi < pj ⇔def i < j for all i, j ∈ [1, n]

Remark 1 (Dispatch, Delivery).
A dispatch represents a sequence of packets the UDP socket of a sender forwards to the network.

Definition 2 characterizes each packet of a dispatch (p)n as unique. This models the behavior
of the network which does not identify packets with the same content but delivers each packet
individually: Every packet dispatched to the network is treated as a new packet different from
previously dispatched packets regardless of its content.

Each element in the delivery set D(p)n represents a packet sequence that is possibly received
when (p)n is sent on a network with unlimited capacity. There are no restrictions regarding the
amount of packet perturbation in the form of packet loss, duplication, and reordering. For non-
empty dispatches (p)n with n > 0, D(p)n is infinite because the number of the duplications and
hence the length of a delivery is not restricted in Definition 2.

Example 2 (Dispatch, Delivery).
Let p, q, r ∈ P be distinct packets, i. e. , p 6= q, p 6= r, q 6= r. Then

• (p, q, p) is not a dispatch (packets are not unique);

• (p, q) is a dispatch and it holds for its delivery set D(p,q):

() ∈ D(p,q) empty delivery (all packets lost)
(p, q) ∈ D(p,q) normal delivery (no loss/duplication/reordering)
(q, q) ∈ D(p,q) loss and duplication, no reordering

(q, p, q) ∈ D(p,q) no loss, duplication and reordering
(q, r, q) 6∈ D(p,q) packet r not in (p, q)

As mentioned in Remark 1, D(p)n represents the set of deliveries for network with unbounded
capacity. Real networks have a finite capacity which restricts reordering: Assuming that packets
are not reordered in the (socket of the) sender and receiver but only while they are on the network,
only groups of packets are reordered which are at the network at the same time. For instance, in
the scenario of Figure 3, packet pc may be delivered before packet p1 but packet pc+1 cannot be
delivered before packet p1 unless some packet in between is lost. Generally, after delivering packet
pi, at most c − 1 packets can be delivered which have been dispatched before pi. This is because
packets dispatched before pi but delivered after pi must be, together with pi, on the network at the
time pi is about to be delivered. There cannot be more than c− 1 such packets because the network
can hold at most c packets.

Formally, for a packet qi of a delivery (q)m ∈ D(p)n , let L(q)m,i = {qj | j > i ∧ qj < qi} denote
the set of late packets in (q)m w. r. t. qi, i. e. , packets qj < qi that have been dispatched before qi
but delivered after qi (see dispatch order in Definition 2).

Just before qi is delivered, all packets in L(q)m,i and qi must be on the network with capacity c,
which implies that |L(q)m,i ∪ {qi}| ≤ c. Since qi 6∈ L(q)m,i we get |L(q)m,qi | < c.

Definition 3 formalizes the effect of the network capacity on the set of deliveries.

379

Software Model Checking of UDP-based Distributed Applications

Definition 3 (Capacity-Bounded Deliveries).
Let D(p)n be the set of deliveries of a dispatch (p)n. Let c ∈ N1 be the maximum number of

packets the network can hold at a given time.
For a delivery (q)m ∈ D(p)n and i ∈ [1,m− 1], let L(q)m,i =def {qj | j > i ∧ qj < qi} denote the

set of late packets in (q)m w. r. t. qi. Then

D(p)n,c =def {(q)m ∈ D(p)n | ∀i ∈ [1,m− 1] : |L(q)m,i| < c}

is the capacity c bounded delivery set of (p)n.

Remark 2 (Capacity-Bounded Deliveries).
D(p)n,c represents the set of packet sequences that may be received when sending n UDP packets

(p)n on a network with capacity c. It is still infinite for n > 0 since the number of duplications and
thus the length of the received packet sequences remains unconstrained by the network capacity.

In Definition 3, we model the capacity of the network in terms of UDP packets, i. e. , we abstract
from the fragmentation of datagram packets into smaller IP packets or network frames. Moreover, we
assume that the capacity of the network is sufficiently large to hold at least one complete datagram
packet.

Note that D(p)n,c = D(p)n if n ≤ c because, by Definition 2 it holds for all (q)m ∈ D(p)n and
i ∈ [1,m− 1]: L(q)m,i ⊆ {pj | j ∈ [1, n]} \ {qi} and thus |L(q)m,i| < n which implies that |L(q)m,i| < c
for all i ∈ [1,m−1]. This is consistent with the intuition that only networks with a capacity smaller
than the number of subsequently sent packets restrict the reordering of packets.

Note further that a network with capacity 1 does not permit reordering because D(p)n,1 = {(q)m ∈
D(p)n | ∀i ∈ [1,m− 1] : L(q)m,i = ∅}. I. e. , after the delivery of a packet qi no packets are delivered
that have been dispatched before qi and it holds: i < j implies qi ≤ qj for all (q)m ∈ D(p)n,1 and
i, j ∈ [1,m].

As a direct consequence of Definition 3 we get the following monotonicity for all c, c′ ∈ N :
c < c′ ⇒ D(p)n,c ⊆ D(p)n,c′

For c, c′ ∈ [1, n] we get a strict monotonicity: c < c′ ⇔ D(p)n,c ⊂ D(p)n,c′ . I. e. , networks with lower
capacity allow less cases of reordering as illustrated in the subsequent example.

Example 3 (Capacity-Bounded Deliveries).
Consider three packets p, q, r ∈ P and a capacity c ≥ 3. Then the following deliveries are (not)

contained in the capacity-bounded delivery sets D(p,q,r),c (equal to D(p,q,r)), D(p,q,r),2, and D(p,q,r),1:

D(p,q,r),c D(p,q,r),2 , D(p,q,r),1

(p, q, r) ∈ ∈ ∈
(p, p, r) ∈ ∈ ∈
(r, p, r) ∈ ∈ 6∈
(r, p, q) ∈ 6∈ 6∈

(r, p, r) 6∈ D(p,q,r),1 and (r, p, q) 6∈ D(p,q,r),1 because a network with capacity 1 does not allow
reordering (Remark 2). Hence packet p cannot be delivered after the first delivery of the later
packet r.

(r, p, r) ∈ D(p,q,r),2 because the following sequence of events realizes the delivery (r, p, r) of
dispatch (p, q, r) on a network with capacity 2:

Event Packets on the network Delivered packets

- ∅ ()
p dispatched {p} ()
q dispatched {p, q} ()
q lost {p} ()
r dispatched {p, r} ()
duplicate of r delivered {p, r} (r)
p delivered {r} (r, p)
r delivered ∅ (r, p, r)

380

International Journal of Networking and Computing

Conversely, the delivery (r, p, q) requires a network with capacity c ≥ 3 as demonstrated by its
generating event sequence:

Event Packets on the network Delivered packets

- ∅ ()
p dispatched {p} ()
q dispatched {p, q} ()
r dispatched {p, q, r} ()
r delivered {p, q} (r)
p delivered {q} (r, p)
q delivered ∅ (r, p, q)

In the sequel, we identify and characterize finite subsets of the delivery set D(p)n of a non-empty
dispatch (p)n, suitable for testing distributed applications.

Finite subsets of D(p)n can be obtained, for instance, by

• setting an upper bound on the length of deliveries (global constraint);

• restricting the number of times each dispatched packet may appear in a delivery (local con-
straint).

When testing an SUT, the number of packets that will be transmitted in a given test run, is often not
known in advance, making it difficult to decide and enforce a limit on the length of deliveries. Hence
we opted for constraining the number of generated duplicates of each individual packet instead.

Therefor, we introduce a finite set M ⊂ N of multiplication choices which restricts the number
of times each dispatched packet may appear in each individual delivery as follows:

Definition 4 (Multiplication-Bounded Deliveries).
Let M ⊂ N be a non-empty, finite set of natural numbers, called multiplication choices. Let

D(p)n be the delivery set of dispatch (p)n. Then

D(p)n,M =def {(q)m ∈ D(p)n | ∀i ∈ [1, n] : |{j ∈ [1,m] | qj = pi}| ∈M}

is the set of multiplication M bounded deliveries.

Remark 3 (Multiplication-Bounded Deliveries).
D(p)n,M is defined in such a way that for each delivery (q)m ∈ D(p)n,M the number of times a

dispatched packet pi appears in (q)m is contained in M . Dependent on the multiplication choices
M , different cases of packet loss and duplication are obtained. For instance, D(p)n,{1} is the set
of permutations of (p)n, representing all reorderings without packet loss and duplications. D(p)n,M

contains deliveries with packet loss if and only if 0 ∈M , and it contains cases of packet duplication
if and only if M contains an element larger than 1. With M = [l, u] we obtain the set of deliveries
where each dispatched packet is delivered at least l and at most u times.

In the shortest deliveries (q)m ∈ D(p)n,M , each dispatched packet pi appears min(M) times while
in the longest deliveries, each packet pi appears max(M) times. Hence we get for the length m of
each delivery in (q)m ∈ D(p)n,M : n·min(M) ≤ m ≤ n·max(M).

Since by Definition 2, each delivered packet qi is contained in the finite set {pi | i ∈ [1, n]}, we
get with l = n·min(M), u = n·max(M), and P̄ = {pi | i ∈ [1, n]} : D(p)n,M ⊆

⋃
m∈[l,u] P̄

m. This
shows that D(p)n,M is finite.

Similar to the case of capacity-bounded deliveries, we get the following strict monotonicity as
direct consequence of Definition 4 for all M,M ′ ⊂ N and n ∈ N1 : M ⊂ M ′ ⇔ D(p)n,M ⊂
D(p)n,M ′ . I. e. , the set of multiplication-bounded deliveries D(p)n,M can be extended/reduced by
adding/removing elements from the multiplication choice set M .

Example 4 (Multiplication-Bounded Deliveries).
Let p 6= q ∈ P be distinct packets. Then

D(p,q),{1} = {(p, q), (q, p)} no packet loss and duplication
D(p,q),{0,1} = {(), (p), (q), (p, q), (q, p)} packet loss but no duplication
D(p,q),{1,2} = {(p, q), (q, p), (p, p, q), ..., (q, q, p, p)} no packet loss but duplication at most once

D(p,q),{0,1,2} = {(), (p), (q), (p, q), ..., (q, q, p, p)} as listed in Example 1

381

Software Model Checking of UDP-based Distributed Applications

To control both duplication and reordering, multiplication-bounded delivery sets are combined
with capacity-bounded delivery sets:

Definition 5 (Multiplication- and Capacity-Bounded Deliveries).
Let (p)n be a dispatch, M ⊂ N a non-empty, finite set of multiplication choices, and c ∈ N1 a

network capacity. Then

D(p)n,M,c =def D(p)n,M ∩D(p)n,c

is the set of multiplication M and capacity c bounded deliveries.

Remark 4 (Multiplication- and Capacity-Bounded Deliveries).
The set of multiplication- and capacity-bounded deliveries D(p)n,M,c represents the set of packet

sequences a receiver may obtain when sending to it n UDP packets on a network which can hold at
most c packets and delivers each packet a number of times that is contained in M .

Since D(p)n,M is finite (Remark 3), also D(p)n,M,c is finite and hence can be enumerated as test
input.

Combining capacity restriction c with a multiplication restriction M enables the representation
of reliable transmissions without packet loss, duplication, and reordering, by setting c = 1 and
M = {1}. Here the only possible delivery is equal to its dispatch: D(p)n,{1},1 = {(p)n}.

Furthermore, with c > 1 and M = {1} we obtain the cases with capacity-bounded reordering
but without packet loss and duplication, as illustrated in the following example.

Example 5 (Capacity-bounded Reordering without Packet Loss and Duplication).
For the dispatch (p, q, r) of the three distinct packets (p, q, r) ∈ P and the multiplication choice

set {1} we get:

D(p,q,r),{1},1 = {(p, q, r)}
D(p,q,r),{1},2 = {(p, q, r), (p, r, q), (q, p, r), (q, r, p)}
D(p,q,r),{1},3 = {(p, q, r), (p, r, q), (q, p, r), (q, r, p), (r, p, q), (r, q, p)}

D(p,q,r),{1},3 is equal to D(p,q,r),{1} (Remark 2), which is the set of permutations of the three packets
p, q, r (Remark 3).

In the case of network capacity 2, D(p,q,r),{1},2 does not contain the sequences where the last
packet r is delivered first, because this would require the network to hold all three packets p, q, r at
the time r is delivered.

3.2 Generating Non-Deterministic UDP Transmissions with JPF

Our goal is to generate the set of multiplication- and capacity-bounded deliveries of packet sequences
sent by the SUT to a remote peer or vice versa, w. r. t. a multiplication choice set M and an assumed
network capacity c, as defined in Definition 5. The parameters M and c are chosen according to
the properties and test goal of the SUT at hand, and do not necessarily correspond with properties
of the real network. Moreover, we generate deliveries with packet perturbation on the fly, without
fixing a number n of packets to be transmitted, using JPF’s choice generator mechanism.

3.2.1 General Architecture

Packet perturbation is implemented in the JPF extension net-iocache [22] which intercepts, similar
to a proxy, the communication between the SUT and the remote peers (Figure 4). When the
SUT calls method send of a datagram socket to trigger a packet transmission to a remote peer,
the transmission of that packet is delegated to net-iocache. Calls of method receive are handled
similarly. This way, incoming and outgoing packet sequences can be manipulated by net-iocache for
generating the desired cases of packet loss, duplication and reordering. In the upper part of Figure 4,
net-iocache drops packet 2 sent by the SUT, while in the lower part, packet 1 sent by the remote
peer is not forwarded to the SUT.

382

International Journal of Networking and Computing

Figure 4: net-iocache generates packet loss by dropping outgoing and incoming packets.

In our setting, the SUT and remote peers run in a local, controlled test environment where
UDP I/O behaves reliably without packet loss, duplication, and reordering. All instances of packet
perturbation are injected by net-iocache, giving us full control over the type and amount of generated
packet perturbation and ensuring the reproducibility of test runs.

Figure 5: Systematic generation of packet perturbation in model class DatagramSocket of net-
iocache.

Figure 5 depicts the components involved in systematic simulation of unreliable UDP behav-
ior. As mentioned in Section 2.1, JPF uses model classes to support Java API classes with native
code. We implemented our solution in the model class of DatagramSocket in the form of two mod-
ules: the PacketMultiplier module, and the PacketPermutator module (Figure 5 center). The
PacketMultiplier generates cases of packet loss and duplication according to a given set of multi-
plication choices M . The PacketPermutator uses a buffer to change the order of datagram packets
and thus simulates a reordering network with capacity c. The multiplier and permutator modules
perform non-deterministic choices when deciding the number of instances and order of packets to be
forwarded to the SUT or remote peer, making use of JPF’s choice generator mechanism.

3.2.2 Algorithms for Generating Packet Perturbation

Algorithms 2, 3, 5, and 6, describe how the packet multiplier and permutator are realized in send
and receive direction. In the sequel, we describe the realization of the PacketMultiplier and
PacketPermutator modules in send direction (Algorithms 2 and 3). The receive direction (Algo-
rithms 5 and 6) is implemented similarly.

When the SUT sends a datagram packet, it is forwarded to the PacketMultiplier (Algorithm 1,
line 2). PacketMultiplier determines the number of instances to be generated from the passed

383

Software Model Checking of UDP-based Distributed Applications

1 Function send(packet)
2 packetMultiplierPush(packet);

Algorithm 1: send method of DatagramSocket in net-iocache.

1 Function packetMultiplierPush(packet)
2 counterpacket ← chooseFrom(MULTIPLYCHOICES);
3 if counterpacket > 0 then
4 packetPermutatorPush(packet);

Algorithm 2: PacketMultiplier module in send direction.

1 Function packetPermutatorPush(packetIn)
2 sendBuffer ← sendBuffer ∪ {packetIn};
3 flushSendBuffer(BUFFERLIMIT − 1);

4 Function flushSendBuffer(newSize)
5 while |sendBuffer| > newSize do
6 packetOut ← chooseFrom(sendBuffer);
7 sendToNetwork(packetOut);
8 counterpacketOut ← counterpacketOut − 1;
9 if counterpacketOut = 0 then

10 sendBuffer ← sendBuffer\{packetOut};

Algorithm 3: PacketPermutator module in send direction.

1 Function receive(packet)
2 packetPermutatorPull(packet);

Algorithm 4: receive method of DatagramSocket in net-iocache.

1 Function packetPermutatorPull(packetOut)
2 while receiveBuffer= ∅ ∨ (|receiveBuffer| < BUFFERLIMIT ∧ ¬timeout) do
3 packetMultiplierPull(packetIn);
4 receiveBuffer ← receiveBuffer ∪ {packetIn};
5 packetOut ← chooseFrom(receiveBuffer);
6 counterpacketOut ← counterpacketOut − 1;
7 if counterpacketOut = 0 then
8 receiveBuffer ← receiveBuffer\{packetOut};

Algorithm 5: PacketPermutator module in receive direction.

1 Function packetMultiplierPull(packet)
2 flushSendBuffer(0);
3 receiveFromNetwork(packet);
4 counterpacket ← chooseFrom(MULTIPLYCHOICES);
5 if counterpacket < 1 then
6 packetMultiplierPull(packet);

Algorithm 6: PacketMultiplier module in receive direction.

384

International Journal of Networking and Computing

packet, based on the user-configured list MULTIPLYCHOICES which corresponds to the set M of
multiplication choices in Definition 4. For instance, if MULTIPLYCHOICES is set to “0,1”, function
chooseFrom in line 2 of Algorithm 2 performs a non-deterministic choice from the cases “packet
loss” and “packet delivery exactly once”, and stores the result of this choice in a counter for the
packet to be sent.

Function packetPermutatorPush (Algorithm 3) adds packets passed from function
packetMultiplierPush to a set sendBuffer whose maximum size is constrained by the config-
urable number BUFFERLIMIT which is the assumed network capacity c as in Definition 3. Line 6 of
Algorithm 3 makes a non-deterministic choice every time a packet is selected from sendBuffer and
forwarded to the network. The combination of non-deterministic choices in the PacketMultiplier

and PacketPermutator modules generates all instances of reliable and unreliable UDP behavior in
the limits given by MULTIPLYCHOICES and BUFFERLIMIT, according to Definition 5.

3.2.3 On-the-fly Generation of Non-Deterministic I/O with JPF’s Choice Generators

The non-deterministic choice chooseFrom in Algorithms 2, 3, 5, 6 is implemented using the choice
generation mechanism provided by JPF’s verification API. Choice generators create a separate
execution branch for each choice from a finite set of options. For instance, the statement int

i=Verify.getInt(min, max) instructs JPF to execute the rest of the SUT for all values of i be-
tween min and max in max-min+1 separate execution branches. In the first execution branch, i is
assigned the value of min. When the execution branch is fully explored, JPF backtracks the SUT to
the state before executing the assignment of min to i. After that, it assigns the next open option
min+1 to i and executes the rest of the SUT. This is continued until the SUT is executed for all
options min, min+1, ..., max.

This mechanism is used in chooseFrom to let JPF generate and explore the different possibil-
ities of packet loss, duplication, and reordering within the constraints of MULTIPLYCHOICES and
BUFFERLIMIT.

3.2.4 Configuration of Multiplication Choices and Reordering Buffer

Considering all forms of packet perturbation, the number of non-deterministic I/O outcomes and
executing branches generated by the packet multiplier and permutator modules may quickly grow
large. In the case of single threaded SUTs and few exchanged packets (<5), it may be feasible to
verify the SUT against all combinations of packet loss, duplication, and reordering. In other cases,
the number of I/O outcomes may be too large to be explored exhaustively within the available
amount of memory and time.

We leverage JPF’s configuration framework to enable the user-defined setting and dynamic adap-
tion of the parameters MULTIPLYCHOICES and BUFFERLIMIT that determine the kind and number of
generated cases according to Definition 5.

For the configuration of these parameters, we added the following JPF properties:

jpf-net-iocache.UDP.packetMultiplicationChoices=<MULTIPLYCHOICES>

jpf-net-iocache.UDP.reorderWindowSize=<BUFFERLIMIT>

For instance, the setting of the BUFFERLIMIT to 1 disables reordering of packets (Re-
mark 2). The sequence 1,0,2 set for MULTIPLYCHOICES configures the PacketMultiplier mod-
ule to explore three execution branches for each packet; first, packet sent/received exactly
once (1), second, sent/received packet lost (0), and third packet sent/received twice (2). For
jpf-net-iocache.UDP.packetMultiplicationChoices=0,2,1 JPF explores the same cases as
above but with packet loss as the first choice, followed by duplication, and finally normal deliv-
ery of packets. Similar properties allow the configuration of the parameters MULTIPLYCHOICES and
BUFFERLIMIT for methods receive and send separately.

JPF’s framework supports the static setting of properties in a configuration file for each SUT, as
well as their dynamic manipulation by inserting instructions inside the SUT’s source code using the
API method Verify.setProperties. This method can be used to restrict systematic simulation to

385

Software Model Checking of UDP-based Distributed Applications

sections of interest in the SUT’s source code. The dynamic configuration mechanism increases scal-
ability and modularity of unreliability simulation, because it can be tailored to specific requirements
of each SUT component.

3.2.5 Limitations

The communication pattern between the SUT and the remote peers may restrict packet reordering
beyond the user-defined BUFFERLIMIT. In particular, a sequential request-response pattern, where
a peer waits for the single response to a previous request before sending the next request, prevents
packet reordering.

In many applications some packets are sent or received in response to previous network traf-
fic [3]. We do not reorder packets across such logical message boundaries, as this would produce
communications that are not possible in reality. To ensure that responses to previously sent packets
are transmitted and can be received by the SUT, line 2 of Algorithm 6 forwards all packets to the
network that have been kept in the send buffer for reordering. Emptying the send buffer on receive,
however, restricts the reordering of outgoing packets.

Conversely, if the remote peers do not send sufficiently many packets to the SUT, it is not possible
to fill the receiveBuffer in Algorithm 5 up to its limit which restricts the reordering of incoming
packets. In this case, the while loop in line 2 of Algorithm 5 terminates early because of a time out.

For checking real time applications, it may be useful to manipulate time-related communication
properties such as delay and jitter [13]. In contrast to network emulators such as netem [23], net-
iocache does not offer means to control such properties. The SUT, executed by JPF, runs slower
than the remote peers running on a host JVM because of the model checking overhead (see runtime
results in Sections 4.1 and 4.2). This introduces hard to control delays which may have an impact
on the communication between the SUT and its remote peers. To check how the SUT reacts on
large delays, we consider the extension of net-iocache towards the configurable injection of timeouts
on I/O operations.

An additional limitation of our approach is that the buffering of incoming and outgoing packets
for reordering may mask some I/O exceptions. When holding back a sent packet in the send buffer,
we take care to throw predictable exceptions such as a “socket exception” in the case the socket
is closed (omitted in Algorithm 3 for brevity). However, unpredictable I/O exceptions caused, for
instance, by network failures are missed.

3.3 Implementation of UDP Support in JPF

JPF does not cover package java.net of the Java library: When an SUT calls methods of a class
such as DatagramSocket, JPF stops with an exception because of non-supported native methods.

jpf-nhandler [38] is a JPF extension that adds generic support of native method calls to JPF
by delegating them to the host JVM. In the case of network sockets, a delegation-based approach
does not suffice: When JPF backtracks the SUT, the states of the backtracked model-level and
corresponding host-level sockets may become inconsistent, causing spurious behavior such as I/O
exceptions.

net-iocache [22, 3] is a JPF extension that supports, in contrast to jpf-nhandler, the back-
tracking of network I/O. However, it did not support UDP because, originally, it has been designed
and highly optimized for connection- and stream-oriented network communication between a single
server and one or more client processes using TCP.

Rather than adding specific backtracking support of datagram sockets to the generic tool jpf-
nhandler, we opted for extending net-iocache towards support of UDP.

3.3.1 Redesign of net-iocache

Extending net-iocache towards packet-oriented communication using UDP turned out to be difficult
because, in a connection-less protocol such as UDP, it is not always possible to distinguish whether
a communicating peer takes the role of a server or a client. UDP support required a redesign of

386

International Journal of Networking and Computing

net-iocache, targeted at general applicability (e. g., support of peer-to-peer communication) and easy
extensibility towards new communication protocols.

SyncObject

HistoryAction

SocketAction ServerSocketAction

SocketConnect

Socket ServerSocket DatagramSocket

DatagramSocketAction

1

1*
+exec 1

**

Model Classes

Native Classes
(JPF Extension)

... DSocketSend

DSocketReceive

......

SocketBind SSockBind

SSockAccept

DatagramSocketPeer

1

1

ü
ý
þ

SUT-Level I/O
Packet Perturbation

ü
ý
þ

Host-Level I/O
No Packet Perturbation

Figure 6: Conceptual model of net-iocache v2 (abstract classes in italics).

Figure 6 depicts the conceptual model of net-iocache v2, including its extension towards UDP.
The upper part of Figure 6 contains JPF model classes for the covered Java network API which are
the classes Socket, ServerSocket, and DatagramSocket. Each model class interacts with a native
peer class such as DatagramSocketPeer in Figure 6 to execute code in the host environment. While
model classes are executed by JPF, native peer classes and other native classes are executed by the
host Java Virtual Machine as part of JPF.

Model class DatagramSocket and its native peer DatagramSocketPeer implement the algorithms
for packet perturbation as described in Section 3.2.2.

Native class SyncObject (Figure 6, center) is a generic host-level representation of network model
classes. Similarly to jpf-nhandler [38], net-iocache v2 delegates method calls of model classes to
host-level objects of the same type. Each such method call is represented as an object of class Action
(Figure 6, center). For instance, a single invocation of dsocket.send(packet) is represented as an
Action object, associated with sync object dsocket.

Subclasses of Action such as SocketConnect in the case of TCP sockets, or DSocketSend in the
case of UDP sockets (Figure 6 bottom), execute a network I/O operation in the host environment
and capture its result. In contrast to SUT-level UDP I/O, host-level I/O is not subject to packet
perturbation in the form of injected packet loss, duplication, or reordering.

When JPF backtracks the SUT, the reverted state of objects of model classes such as
DatagramSocket may differ from the state of their corresponding host-level objects which are not
controlled by JPF. For synchronizing host objects with model objects, net-iocache v2 maintains a
History of executed actions for each sync object (Figure 6, center right). This history is used for 1)
detecting state mismatches between model and host objects and 2) synchronizing host objects with
model objects after backtracking: A host object oh is synchronized with the backtracked state of its
corresponding model object om, by resetting oh to its initial state and re-executing recorded actions
on oh until its state matches that of om.

3.3.2 Adding support for UDP to net-iocache

Classes SyncObject, Action, and History form the generic core of net-iocache v2. Since these classes
are entirely abstract from the kind of executed actions and manipulated objects, the architecture
is easily extensible. Adding support of UDP amounts to providing a model class and native peer
class for DatagramSocket (Figure 6, top) and implementing the supported actions as subclasses of

387

Software Model Checking of UDP-based Distributed Applications

abstract class Action (Figure 6, bottom right). Each (non-abstract) subclass of class Action needs
to override methods for 1) determining the set of sync objects modified by the action, 2) comparing
the action with other actions (cache matching), 3) executing it in the host environment, 4) capturing
the execution results such as return values or thrown exceptions.

DatagramSocket (UDP) Socket (TCP)
classes lines classes lines

model classes 1 183 4 93
native peer classes 1 245 4 64
action subclasses 9 262 13 313
utility classes 3 152 2 129
total 14 842 23 599

Table 1: Size of code for UDP and TCP sockets in net-iocache v2 alpha rev 862.

Table 1 summarizes the number of classes and lines of code for the implementation of UDP
support in net-ioache as compared to the code for TCP sockets. Lines in the source code without
statements are excluded. In addition to the model classes, their native peer classes, and subclasses
of class Action as described above, utility classes for the representation of packet content etc. have
been provided. While the code for implementing actions and for utility functionality has a similar
size for UDP and TCP, the DatagramSocket model class and its native peer are more complex than
the TCP counterparts because of the additional code for generating packet perturbation.

3.3.3 Applying JPF/net-iocache — the User’s Perspective

Using JPF and net-iocache for the testing of distributed Java applications is similar to classical
testing: The user provides a number of test cases in the form of 1) selected input data, 2) definitions
of the expected output and/or assertions of desired properties, 3) scripts or Java code for running the
test cases. To reduce the effort for the manual construction of test cases, JPF can also be combined
with automatic testing techniques such as model-based testing [4, 6].

The manually provided or automatically generated test cases can be executed using either a
standard JVM (classical testing) or JPF (software model checking). JPF executes the SUT for all
outcomes of non-deterministic operations such as thread scheduling choices, random numbers, or
unreliable I/O, resulting in a higher coverage of program states. The standard JVM is preferable
for evaluating the real-time behavior, and the performance and robustness of the system in scenarios
with large input and heavy load, because JPF slows down the execution and the number of execution
branches often grows exponentially in the size of the input data and the number of threads.

Using custom choice generators of JPF’s verification API, different choices of input data can be
explored in the same way as outcomes of non-deterministic operations. However, this is limited to
input parameters with a comparably small finite domain and is not practical for large data domains
such as floating point values, or compound data structures such as lists and maps. For verifying
large data domains, other formal methods such as symbolic model checking [27], satisfiability modulo
theories solving [32], or theorem proofing [24] are more appropriate.

4 Experimental Results

In this section, we analyze the performance of net-iocache v2 with UDP support, and demonstrate
its usefulness for finding defects in a protocol for UDP-based file transfer.

4.1 Performance Analysis

In a first experiment, we analyzed the performance of net-iocache v2 w. r. t. runtime and memory
consumption, using the alphabet client/server application [3]. Figure 7 depicts the components of
the application.

388

International Journal of Networking and Computing

Alphabet Server

Alphabet Client

Session
 1

Producer

Consumer

Session
 2

Producer

Consumer

‘0’

‘a’

‘1’

‘b’

Connection 1

Connection 2

Figure 7: Components of the alphabet client/server application.

The alphabet client starts concurrent sessions, each communicating independently with the al-
phabet server through an own dedicated connection, implemented either by a TCP or UDP socket.
Each session runs two threads: the producer thread sending requests and the consumer thread re-
ceiving the corresponding responses from the alphabet server. The alphabet server answers requests,
consisting of a single digit ’0’, ’1’, . . . with corresponding letters ’a’, ’b’, . . . For comparability, the
UDP-based alphabet client is kept similar to the original TCP-based version and hence does not
cope with UDP’s unreliability.

The complexity of the alphabet client is determined by

• the number of sessions/connections to the server;

• the number of requests sent on each connection.

In the subsequent experiments, we report the results obtained for 3 connections and 1–8 requests,
because this setting turned out to be challenging but still manageable.

We run the alphabet client as an SUT on JPF with net-iocache to check whether the received
responses are correct for all interleavings of producer and consumer threads, sending and receiving
messages concurrently on different connections. Therefor, the consumer thread checks the following
assertion after receiving responsei for the i-th request request i sent on its connection to the server:

responsei = request i + OFFSET

OFFSET denotes the difference of the ASCII codes of letters ’a’ and ’0’. The assertion holds as
long as connections to the server are reliable because on each connection, the alphabet server sends
responses in the order of the received requests. However, it is likely to fail if, in the case of UDP,
packets are lost, duplicated, or reordered.

#Req Protocol
Fault Time Heap

#I/O
found [s] [MB]

1 TCP − 0.082 2.6 15
UDP no 0.078 2.6 15

2 TCP − 0.082 2.6 21
UDP no 0.079 2.6 21

3 TCP − 0.083 2.6 27
UDP no 0.080 2.6 27

Table 2: TCP and UDP alphabet client, 3 connections and 1–3 requests, on the Oracle JVM.

Table 2 shows the results of executing the TCP and UDP-based alphabet client on the standard
Oracle JVM (32 Bit Java RTE 1.8.0 31-b13 / Java HotSpot Server VM 25.31-b07). Both the
alphabet client and server were executed on the same 8 core Mac Pro workstation with 24 GB of
memory running Ubuntu 14.04.1 LTS.

Since the SUT passes the assertion in all test cases we conclude that UDP behaves reliably in the
test setting. The runtime in column 4 of Table 2 includes the invocation of the JVM. The total num-
ber of I/O operations (column #I/O in Table 2) comprises operations for creating/connecting/closing
sockets and transmitting messages.

389

Software Model Checking of UDP-based Distributed Applications

#Req Protocol
iocache Pkt

Assertion
Fault Time Heap

#I/O #Transitions
version loss found [h:mm:ss] [MB]

1 TCP v1 − active − 0:00:39 720 9,902 310,908
v2 0:00:06 77 1,158 2,143

UDP v2 no active no 0:00:03 77 1,158 2,146
yes 0:00:13 77 2,406 5,734

2 TCP v1 − active − 0:06:36 1009 174,356 2,993,066
v2 0:00:25 77 5,190 7,807

UDP v2 no active no 0:00:19 110 5,190 7,810
yes yes <0:00:01 77 23 49

inactive no 0:05:40 77 42,855 90,493

3 TCP v1 − active − 0:47:19 2,044 1,199,905 16,156,279
v2 0:01:12 110 17,346 23,440

UDP v2 no active no 0:01:00 77 17,346 23,443
yes yes <0:00:01 61 29 61
yes inactive no 1:54:18 110 828,501 1,637,530

Table 3: TCP and UDP alphabet client, 3 connections and 1–3 requests, on JPF/net-iocache (largest
number of column in bold face).

Table 3 shows the results of executing the TCP and UDP alphabet client on JPF v8.0 rev 2 with
net-iocache v1 rev 813 (no UDP support [22]) and v2 alpha rev 862 (with UDP support as described
in Section 3.3). The UDP test cases were executed both without and with simulation of packet
loss using the configuration property jpf-net-iocache.UDP.packetMultiplicationChoices (see
Section 3.2.4). Failing cases were re-executed with the failing assertion deactivated, to let JPF
explore the entire state space of the SUT. This simulates an SUT without defects.

In addition to the test result, the execution time, used heap memory, the number of executed
I/O operations, and the number of transitions were determined for each test case (columns 6–10 in
Table 3). The number of transitions is proportional to the number of instructions JPF executed for
the exploration of the SUT’s state space, including instructions in called methods of library classes
such as java.net.Socket. It is a good indicator of the problem size. The results are as follows:

• All test cases meet the assertion except UDP verified with packet loss simulation for more than
one request. Similar as in the case of using the standard Oracle JVM (Table 2), we did not
observe unreliable UDP behavior even in test cases with more than 10,000 I/O operations, as
long as net-iocache does not inject it in the form of packet loss. If net-iocache drops packets,
JPF finds defects early in its state space search which is consistent with results in our previous
work [4].

• Exhaustive packet loss simulation is expensive if no error is detected (see, e. g., last row of
Table 3). Packet loss simulation introduces, in addition to thread schedules, another dimension
of exponential growth of the state space in the number of requests. This is because on each
send and receive, JPF executes the rest of the SUT twice, to check its behavior for the two
outcomes “packet delivered” and “packet lost”.

• net-iocache v2 performs better than v1, especially in terms of memory consumption. The
major source of overhead in JPF/net-iocache v1 is the number of executed transitions, caused
by the code in model classes such as java.net.Socket that net-iocache provides to support
TCP sockets in JPF (Section 3.3). In net-iocache v2, we reduced the code in model classes to
a minimum.

• Without simulation of unreliable behavior, UDP performs slightly better than TCP, although
the number of I/O operations and transitions are (almost) identical (entries in blue in Table 3).
We suppose that establishing and terminating connections, which is missing in UDP, takes
significant extra time.

As compared to an earlier revision of net-iocache v2 reported in previous work [37], the runtime is
reduced between 30% for the cases without packet loss generation and 80% for cases with packet loss.

390

International Journal of Networking and Computing

The performance improvement has been achieved mainly by moving expensive parts of generating
packet perturbation from the DatagramSocket model class to its native peer class. Native peer code
executes quicker and introduces less states because it runs on the host JVM instead of JPF (see
Section 3.3).

Moreover, net-iocache v1 performs worse on JPF v8 than on JPF v7 (cf. previous work [37]).
We suppose that JPF v8 explores more possible interactions between threads than JPF v7, which
leads to a larger state space in the case of net-iocache v1. In contrast, the higher precision of JPF
v8 did not cause a larger state space in the case of net-iocache v2 because the code in model classes,
that may introduce dependencies between threads, is reduced to a minimum in net-iocache v2.

 0

 20

 40

 60

 80

 100

 120

 1 2 3 4 5 6 7 8

E
xe

cu
tio

n
tim

e
[m

in
]â�

�

Number of requests (3 connections)

UDP/v2/loss/na
TCP/v1
TCP/v2
UDP/v2

UDP/v2/loss

Figure 8: Runtime behavior of net-iocache on different variants of the alphabet client. The first case
(red line) refers to UDP on net-iocache v2 with packet loss enabled and no assertions.

Figure 8 shows the runtime results for model checking each test configuration for up to 8 requests
(horizontal axis). The vertical axis shows the time in minutes it took JPF to explore the entire state
space of the SUT or to detect an assertion violation. Our observations are:

• Except UDP/v2/loss, the runtime of all configurations increases more than linearly in the
number of requests. This is because the number of interleavings of producer and consumer
threads grows exponentially in the number of requests. For UDP without assertions, packet
loss simulation adds another dimension of exponential growth (UDP/v2/loss/na in Figure 8).
Conversely, the runtime of UDP/v2/loss (with assertion) is largest for one request (13 sec)
because this case still passes. If more than one request is sent, JPF reports the failing assertion
within one 1 second.

• net-iocache v1 runs out of 2 GB heap memory when executing it on the TCP alphabet client
for more than 3 requests (TCP/v1 in Figure 8). net-iocache v2, however, succeeds in verifying
8 requests on each connection using only 77 MB of memory, in 1 hour and 28 minutes (TCP/v2
in Figure 8).

• The difference between TCP/v2 and UDP/v2 (no packet loss) rises from a factor of 1.3 for
smaller cases to a factor of 2.9 in the case of 8 requests. We assume that the system runs out
of ephemeral ports when executing larger series of benchmarks and the OS requires more time
to re-allocate used TCP ports than UDP ports.

391

Software Model Checking of UDP-based Distributed Applications

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9

E
xe

cu
tio

n
tim

e
[s

ec
]

lo
g

sc
al

e

Number of requests (1 connection; packet perturbation on send)

M={1, 0, 2} c=2
M={1} c=9

M={1, 0} c=1
M={1} c=2

M={1, 2} c=1
M={1} c=1

Figure 9: Runtime behavior of net-iocache on alphabet client with different configurations of gener-
ated packet perturbation (M : multiplication choices; c: network capacity).

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9

E
xe

cu
tio

n
tim

e
[s

ec
]

lo
g

sc
al

e

Number of requests (1 connection; packet perturbation on send and/or receive for M={1, 0, 2} c=2)

send and receive
send

receive

Figure 10: Runtime comparison of alphabet client with packet perturbation on send, receive, and
both directions.

392

International Journal of Networking and Computing

Figure 9 shows the runtime of model checking the alphabet client sending up to 9 requests
on a single connection, when using different configurations of packet perturbation. To let JPF
explore the entire state space of the SUT, the assertion on the received responses is deactivated.
All runtimes in Figure 9 have been obtained by injecting different forms of packet perturbation
on outgoing packets only (send direction). If packet perturbation is disabled (M = {1} c = 1 in
Figure 9, cf. Remark 4), all cases execute in less than one second. The cases with injected packet
duplication (M = {1, 2} c = 1), capacity 2 bounded reordering (M = {1} c = 2), and packet
loss (M = {1, 0} c = 1) show a moderate exponential growth in runtime. Also the combined
case of packet loss, duplication, and bounded reordering (M = {1, 0, 2} c = 2) appears to grow
exponentially but with a larger growth rate. In contrast, unbounded reordering (M = {1} c = 9)
grows more than exponentially. This is consistent with the growths of the number of permutations
which is factorial.

Figure 10 shows the impact on the runtime performance when packet perturbation is generated
for outgoing packets only (send), incoming packets only (receive), or both directions (send and
receive). Here, we fix the configuration to combined generation of packet loss, duplication, and
capacity 2 bounded reordering (M = {1, 0, 2} c = 2), which is the most expensive case in Figure 9.
We observe that applying packet perturbation to both outgoing and incoming packets increases the
runtime significantly. When both outgoing requests and the respective responses are duplicated, the
number of responses is up to 4 times higher than without packet duplication. This in turn increases
the number of cases resulting from reordering.

Furthermore, we observe that packet perturbation on receive is less expensive than on send. This
is a consequence of the simplicity of the SUT: The alphabet client does not process the received
responses in any form, leaving its state unchanged regardless of the received packet. The increasing
likelihood, that JPF detects a “visited” state and prunes the state space, seems to keep the growth
rate down below exponential growth in the case of packet permutation on receive.

4.2 Verifying a UDP-based File Transfer Protocol

We choose as a demonstrator case a client/server application that uses UDP for the transfer of
files from the server to the client. This is similar to the Starbust Multicast File Transfer Protocol
(MFTP), that uses UDP for distribution of files [34].

1 Function main()
Input: fileNames: identifiers of files to be retrieved from the server
Input: retries: number of maximum consecutive resend requests for a file

2 for fileName ∈ fileNames do
3 filePackets ← getNumberOfPackets(fileName);
4 data ← getFile(fileName, filePackets, retries);
5 assert isContentEqual(fileName, data);

Algorithm 7: main method of the file transfer client.

Algorithm 7 shows the main method of the file transfer client. Using a TCP connection, the
client first requests the number of packets necessary to transfer a specific file from the server (line 3
of Algorithm 7). For simplicity, we assume that all requested files exists in the server’s repository.
After that, the client calls getFile, shown in Algorithm 8, to initiate the file transfer using UDP.
Function getFile is supposed to ensure the validity of the returned packet array by compensating
for packet loss, duplication, and reordering. For testing purposes, we compare the contents of the
received data against a local reference copy of the file (line 5 in Algorithm 7).

Function getFile (Algorithm 8) copes with loss, duplication, and out-of-order arrival of packets
by using the packet sequence numbers the server adds to the data of each packet. The UML sequence
diagram in Figure 11 shows correctly handled cases of packet duplication and out-of-order delivery.
However, net-iocache demonstrates that incorrectly handled packets may cause files to be received
incorrectly, resulting in an assertion failure (see UML sequence diagram in Figure 12).

393

Software Model Checking of UDP-based Distributed Applications

1 Function getFile(fName, fPackets, retries)
2 data ← new Packet[fPackets];
3 missingPackets ← {0, 1, ..., fPackets − 1};
4 consecutiveTimeouts ← 0;
5 send(request(fName, missingPackets));
6 while missingPackets 6= ∅ do
7 receive(packet);
8 if timeout then
9 consecutiveTimeouts ← consecutiveTimeouts + 1 ;

10 if consecutiveTimeouts > retries then
11 return ABORTED;

12 send(request(fName, missingPackets));

13 else
14 consecutiveTimeouts ← 0;
15 index← getSequenceNumber(packet);
16 if index ∈ missingPackets then
17 data[index] ← packet;
18 missingPackets ← missingPackets\{index};

19 return data;

Algorithm 8: Function getFile() of the client side of file transfer application.

Figure 11: Scenario where the client compensates for packet reordering and duplication.

394

International Journal of Networking and Computing

Figure 12: I/O sequence generated by net-iocache revealing a case of an incorrectly handled packet.

JPF detects the defect in the client when packet duplication is enabled using the following
configuration (see Section 3.2.4):

jpf-net-iocache.UDP.packetMultiplicationChoices=2

jpf-net-iocache.UDP.reorderWindowSize=1

For two files fi and fi+1 subsequently requested by the client, a duplicate of the last packet of
file fi is not discarded if file fi+1 has at least as many packets. This is, because the client interprets
the duplicated packet of file fi as a missing packet of file fi+1 in line 16 of Algorithm 8, and stores
it in the data array for file fi+1.

This defect can be corrected by including a file ID in each packet the server sends, allowing the
client to distinguish packets of different files, and replacing line 16 of Algorithm 8 with the following
two lines:

fileId ← getFileId(packet);

if(index ∈ missingPackets and fileId = fName) then

Table 4 presents the results of checking the file transfer client as SUT in a scenario where it
downloads 2 files of 1.5 and 2.3 kB size, delivered in 2 UDP packets for the first and 3 UDP packets
for the second file. The data has been collected in the same runtime environment as in Section 4.1.
The two versions of the client “seeded bug” and “corrected version” were executed 1) using the
standard Oracle JVM (rows 1 and 2 in Table 4) and 2) using JPF v8 with net-iocache v2. Execution
on the standard JVM did not reveal the seeded bug because of UDP’s reliable behavior in the local
test environment. However, when configured to generate packet duplicates, JPF detects the bug
and stops the exploration of the state space. This leads to smaller numbers of execution time, I/O
and transitions when the bug is detected in the seeded bug version.

395

Software Model Checking of UDP-based Distributed Applications

VM
Multiplication Reordering Fault Fault Time Heap

#I/O #Transitions
choices window seeded found [s] [MB]

JVM − − yes no 0.12 1 14 −
− − no no 0.12 1 14 −

JPF 1 1 yes no 0.29 77 14 15
no no 0.29 77 14 15

2 yes no 2.38 77 22 31
no no 2.38 77 22 31

2 1 yes yes 0.29 77 14 18
no no 0.29 77 14 19

2 yes yes 2.34 77 16 25
no no 2.87 77 64 233

1,2 1 yes yes 0.42 77 21 45
no no 0.44 77 22 55

2 yes yes 2.96 77 59 234
no no 4.50 110 236 1253

Table 4: Results for checking the file transfer client for 2 files with 2 and 3 packets, using different
configurations of packet perturbation.

Classical testing of this file transfer application did not reveal any bug, and would hardly detect
any in network environments where unreliable UDP behavior rarely occurs. Classical testing there-
fore gives poor coverage of the application-level protocol code in getFile because scenarios, where
it has to compensate for unreliable I/O, rarely occur.

Because the file transfer application only fails in a specific I/O schedule, stochastic approaches
that randomly generate unreliable UDP I/O behavior [13, 23, 33, 40] (see Section 5.2) may miss the
bug.

5 Related Work

Although the testing of applications that use the UDP protocol is largely documented [13, 23, 33, 40],
there is little work on the verification of UDP-based applications. Research related to our work
covers 1) the application of software model checking for verifying networked applications [2, 8,
22, 25, 38, 39, 41, 43] and actor-based systems [21], 2) classical techniques for testing UDP-based
applications [13, 23, 33, 40], and 3) the analysis of packet reordering on IP networks [9, 30, 44].

5.1 Software Model Checking of Distributed Applications

This section summarizes approaches that apply software model checking for verifying networked
applications at varying levels of granularity. There are two major approaches to software model
checking of communicating peer processes:

Centralized approach: merging multiple peer processes into a single multi-threaded process and
verifying it;

Modular approach: verifying a single process at a time while executing the remaining processes
externally.

In this work, we have adopted the latter approach. Centralization-based approaches take a global
view of all processes, resulting a more complete exploration of the system’s state space. However, it
does not scale well in the number of processes. The modular approach offers better scalability but
is not complete in general [22].

396

International Journal of Networking and Computing

5.1.1 Centralization-based Approaches

Stoller and Liu [41] introduced the concept of centralization first when they suggested to extend
software model checking of Java programs to distributed applications by merging multiple processes
into one and simulate Java RMI method invocations by local method calls. This work has since then
been extended to TCP sockets [2, 25]. A similar approach analyzes the complete state space of all
processes by extending JPF itself [38, 39] rather than pre-processing the SUT.

De la Cámara et al. [10] propose a tool for the transformation of distributed C programs to the
input language of the model checker SPIN [16]. The generated program model is combined with a
static, manually constructed model of TCP sockets and verified by Spin. UDP support is mentioned
as “future work” but has, to the best of our knowledge, not addressed by the authors since then.

The approaches above abstract from the physical behavior of communicating processes by sim-
ulating the exchange of messages using queues in shared memory. While there is work that adopts
a centralization-based approach for the simulation of transmission failures [5] and packet perturba-
tion [43], low-level network behavior, such as packet loss or I/O exceptions resulting from network
failures, is usually not in the focus of these approaches.

Barlas and Bultan [8] propose stubs which are classes simulating the environment. The system
is executed on single JVM, assuming an “ideal” network not causing packet perturbation. This
approach limits the testing of UDP applications since disregarding unreliable I/O results in poor
coverage. Conceptually, our approach is related to the use of stubs [8], but we execute unmodified
peer processes [22], rather than user-defined stubs, to obtain the input data for the SUT.

In actor-based systems, multiple autonomous agents communicate by exchanging messages asyn-
chronously. The distributed nature of agents in actor-based systems results in non-deterministic
processing of messages since in-order delivery of messages is not guaranteed unless constrained in
some actor language. Lauterburg [21] proposes a framework for systematically testing actor-based
systems by using JPF for exploring different message schedules. Similar to our approach, JPF is used
to explore the state space of the SUT exhaustively and to control the way messages are exchanged
across the network. However, the application domain is different: Actor-based systems are targeted
while our focus is on UDP-based applications.

The first work on checking UDP-based applications with JPF is centralization- and stub-
based [43]. Similar to our approach, JPF’s choice generator mechanism (cf. Section 3.2.3) is leveraged
for exploring transmission outcomes with packet loss and reordering. Our approach is different in
the following aspects:

• Modularity: Instead of centralizing all communicating process into a single multi-threaded
process, we apply an I/O cache for the verification of one process at a time.

• Physical behavior: net-iocache supports network exceptions and timeouts, required for recog-
nizing and reacting on packet loss. Such physical behavior is hard to reproduce in a centralized
approach replacing network I/O with in-memory message exchange.

• Multiple channels: net-iocache supports the simultaneous communication on more than one
UDP socket (Section 4.1), as well as combined TCP and UDP communication (Section 4.2).

• Duplication of packets is supported in addition to packet loss and reordering.

• Configurability: Based on a formal model of UDP transmissions, the perturbation generation
is configurable in the following dimensions:

1. Type of perturbation: packet loss / duplication / reordering;

2. Range of generated duplication and reordering;

3. Direction: send / receive / both.

Especially the modularity and configurability are key aspects for the scalability (Section 4.1) and
practical applicability of our approach.

397

Software Model Checking of UDP-based Distributed Applications

5.1.2 Modularization-based Approaches

Except net-iocache, the JPF extension jpf-nhandler [38] enables the verification of distributed sys-
tems in a modular way to some extent. However, it does not support the backtracking of sockets
and the synchronization of the remote peers with a backtracked state of the SUT (see Section 3.3).

5.2 Classical Testing of UDP-based Applications

Work that tests networked applications by stochastically manipulating network I/O is mentioned in
this section under the term classical testing approaches of UDP-based applications. These approaches
emulate networks with different physical properties and do not generate cases of packet perturbation
exhaustively.

Farchi et al. [13] propose to instrument Java bytecode related to the UDP API to introduce a
layer for creating “automatic noise” which subsumes delay, packet loss, duplication, and reordering.
In their approach, each packet is randomly selected to be subject to noise with an equal probability.

The network emulator netem [23] and its extensions [33, 40] are Linux modules that inject
stochastically packet delays, loss, duplication, reordering, and IP packet corruption to simulate
non-deterministic unreliable UDP I/O. In contrast, our approach explores outcomes of UDP-based
communication systematically, resulting in higher achievable coverage and reproducibility. In addi-
tion, software model checking supports the systematic exploration of thread schedules and ranges of
input data. This is particularly relevant for networked applications which are often multi-threaded
to raise responsiveness and performance.

5.3 Analysis of Packet Reordering Across Networks

Work mentioned in this section is related 1) to the investigation of how frequent packet reordering
and other forms of perturbation occur in real networks, and 2) to the analysis of the runtime required
for reconstructing the original data from reordered packets. Both motivate the relevance of our work.

[44] reports on an experiment, monitoring the packet transmission between two endpoints across
a dozen of hops on the Internet. The results suggest that the occurrence of packet reordering is
rather frequent. Moreover, [9] shows that the probability of reordering is even higher in wireless
networks.

[30] describes patterns of packet reordering and analyzes their impact on streaming applications
w. r. t. the recovery from packet reordering under different settings of re-sequencing buffers. For
describing the impact of re-sequencing, they consider two metrics: reordering density, defined as the
distribution of displacement of packets from their original position, and reordering buffer occupancy
density which is the degree of occupancy of a buffer used for re-sequencing out-of-order packets.
They conclude that reordering has a significant negative effect on the performance of streaming
applications, and should be handled by the application-level protocol with the same priority as
packet loss.

6 Conclusion and Future Work

We propose the adoption of software model checking for the verification of UDP-based applications,
combining the exhaustive exploration of non-deterministic thread schedules with the systematic
generation of UDP I/O outcomes including packet loss, duplication, and reordering.

The approach has been implemented in a redesign of the JPF extension net-iocache, which now
decouples the caching and communication mechanisms. The exhaustive generation of UDP I/O
outcomes may result in a state space explosion, which we curb by allowing the user to configure the
type and amount of injected packet perturbation.

Our experiments show that the resulting tool is scalable and can detect subtle defects that are
not found by classical testing. This helps to reduce the effort for quality assurance and to increase
the reliability of distributed applications using UDP.

398

International Journal of Networking and Computing

Future work includes the complexity analysis of the presented algorithms, based on the presented
formal model of UDP transmissions. We also plan to check the compliance of our implementation of
the DatagramSocket API with the standard Java library, using the Modbat [1] tool for model-based
testing, similar to past work [4]. Finally, we consider integrating net-iocache with jpf-nas [39], which
implements a centralization-based approach to the verification of distributed systems.

Acknowledgements

This work was supported by JSPS KAKENHI Grants Number 23240003, 23300004, and 26280019.
The authors thank Yoriyuki Yamagata and Lei Ma for their helpful comments.

References

[1] C. Artho, A. Biere, M. Hagiya, E. Platon, M. Seidl, Y. Tanabe, and M. Yamamoto. Modbat:
A model-based API tester for event-driven systems. In Proc. 9th Haifa Verification Conference
(HVC 2013), volume 8244 of LNCS, pages 112–128, Haifa, Israel, 2013. Springer.

[2] C. Artho and P. Garoche. Accurate centralization for applying model checking on networked
applications. In Proc. 21st Int. Conf. on Automated Software Engineering (ASE 2006), pages
177–188, Tokyo, Japan, 2006.

[3] C. Artho, W. Leungwattanakit, M. Hagiya, and Y. Tanabe. Efficient model checking of net-
worked applications. In Proc. 46th Int. Conf. on Objects, Models, Components, Patterns
(TOOLS EUROPE 2008), volume 19 of LNBIP, pages 22–40, Zurich, Switzerland, 2008.
Springer.

[4] Cyrille Artho, Masami Hagiya, Richard Potter, Yoshinori Tanabe, Franz Weitl, and Mitsuharu
Yamamoto. Software model checking for distributed systems with selector-based, non-blocking
communication. In Proc. 28th Int. Conf. on Automated Software Engineering (ASE 2013),
pages 169–179. IEEE, 2013.

[5] Cyrille Artho, Christian Sommer, and Shinichi Honiden. Model checking networked programs in
the presence of transmission failures. In TASE 2007: Proceedings of the First Joint IEEE/IFIP
Symposium on Theoretical Aspects of Software Engineering, pages 219–228, Washington, DC,
USA, 2007. IEEE Computer Society.

[6] Cyrille Valentin Artho, Armin Biere, Masami Hagiya, Eric Platon, Martina Seidl, Yoshinori
Tanabe, and Mitsuharu Yamamoto. Modbat: A model-based API tester for event-driven sys-
tems. In Proceedings of the 9th International Haifa Verification Conference (HVC 2013), volume
8244 of LNCS, pages 112–128, Haifa, Israel, 2013. Springer.

[7] ATIS: Alliance for Telecommunications Industry Solutions. IPTV exploratory
group report and recommendation to the TOPS council. Available at
http://www.atis.org/tops/IEG/ATIS IPTV EG RPT final.pdf, accessed: 30 Apr 2015,
2005.

[8] Elliot D. Barlas and Tevfik Bultan. NetStub: A framework for verification of distributed Java
applications. In Proc. 22nd Int. Conf. on Automated Software Engineering (ASE 2007), pages
24–33, Georgia, USA, 2007.

[9] Arthur C., Girma D., Harle D., and Lehane A. The effects of packet reordering in a wireless mul-
timedia environment. In Wireless Communication Systems, 2004, 1st International Symposium
on, pages 453–457. IEEE, 2004.

399

Software Model Checking of UDP-based Distributed Applications

[10] P. de la Cámara, M. M. Gallardo, P. Merino, and D. Sanán. Model checking software with
well-defined APIs: The socket case. In Proceedings of the 10th International Workshop on
Formal Methods for Industrial Critical Systems, FMICS ’05, pages 17–26, Lisbon, Portugal,
2005. ACM.

[11] R. Droms. Dynamic host configuration protocol. IETF RFC 2131, 1997. Available at
http://www.ietf.org/rfc/rfc2131, accessed: 13th Feb 2015.

[12] L. Eggert and G. Fairhurst. Unicast UDP usage guidelines for application designers. BCP 145,
IETF RFC 5405, 2008. Available at http://www.hjp.at/doc/rfc/rfc5405.html, accessed: 7th
Aug 2014.

[13] Eithan Farchi, Yoel Krasny, and Yarden Nir. Automatic simulation of network problems in
UDP-based Java programs. In Proc. 18th International Parallel and Distributed Processing
Symposium. IEEE, 2004.

[14] S. Feuerhahn, M. Zillgith, C. Wittwer, and C. Wietfeld. Comparison of the communication pro-
tocols DLMS/COSEM, SML and IEC 61850 for smart metering applications. In Proceedings of
the Second IEEE International Conference on Smart Grid Communications (SmartGridComm
2011), pages 410–415, Brussels, Belgium, 2011. IEEE.

[15] Klaus Havelund and Thomas Pressburger. Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer, 2(4):366–381,
2000.

[16] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–295, 1997.

[17] Charlie Hosner. OpenVPN and the SSL VPN revolution. SANS Institute, InfoSec Reading
Room, 2004. Available at https://openvpn.net/index.php/open-source/articles.html, accessed:
27 Apr 2015.

[18] C. Huitema. Real time control protocol (RTCP) attribute in session description protocol (SDP).
IETF RFC 3605, 2003. Available at http://tools.ietf.org/html/rfc3605, accessed: 13th Feb 2015.

[19] Apple Computer, Inc. Apple remote desktop administrators guide version 2.0. Available at
http://images.apple.com/remotedesktop/pdf/ARD Admin Guide.pdf, accessed: 30 Apr 2015,
2004.

[20] F. Junqueira and B. Reed. ZooKeeper: Distributed Process Coordination. O’Reilly, 2013.

[21] Steven Lauterburg, Mirco Dotta, Darko Marinov, and Gul Agha. A framework for state-space
exploration of Java-based actor programs. In ASE, pages 468–479, 2009.

[22] W. Leungwattanakit, C. Artho, M. Hagiya, Y. Tanabe, M. Yamamoto, and K. Takahashi.
Modular software model checking for distributed systems. IEEE Transactions on Software
Engineering, 40(5):483–501, 2014.

[23] Linux Foundation. Network emulation with netem. http://www.linuxfoundation.org/

collaborate/workgroups/networking/netem. Accessed: 7th Oct 2014.

[24] Donald W. Loveland. Automated theorem proving: A logical basis (Fundamental studies in
computer science). Elsevier, 1978.

[25] L. Ma, C. Artho, and H. Sato. Analyzing distributed Java applications by automatic central-
ization. In Proc. 2nd IEEE Workshop on Tools in Process, Kyoto, Japan, 2013. IEEE.

[26] Douglas Mauro and Kevin Schmidt. Essential SNMP. O’Reilly Media, second edition, 2005.

400

http:// www.linuxfoundation.org/collaborate/workgroups/networking /netem
http:// www.linuxfoundation.org/collaborate/workgroups/networking /netem

International Journal of Networking and Computing

[27] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell, MA,
USA, 1993.

[28] Jean-Yves Migeon. The MIT Kerberos administrators how-to guide. Available at
http://www.kerberos.org/software/adminkerberos.pdf, accessed: 30 Apr 2015, 2008.

[29] P. Mockapetris. Domain names — implementation and specification. IETF RFC 1035, 1987.
Available at http://www.ietf.org/rfc/rfc1035, accessed: 13th Feb 2015.

[30] Jayasumana A. Narasiodeyar R. Improvement in packet-reordering with limited re-sequencing
buffers: An analysis. In Local Computer Networks (LCN), 2013 IEEE 38th Conference on,
pages 453–457. IEEE, 2013.

[31] Microsoft Developer Network. Remote desktop protocol. Available at
https://msdn.microsoft.com/en-us/library/aa383015.aspx, accessed: 30 Apr 2015.

[32] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories: From
an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM,
53(6):937–977, 2006.

[33] P. Reinecke, M. Drager, and K. Wolter. Netemcg — IP packet-loss injection using a continuous-
time gilbert model. Technical Report TR-B-11-05, Freie Universitt Berlin, Germany, 2011.

[34] K Robertson, K Miller, M White, and A Tweedly. Starburst multicast file transfer proto-
col (MFTP) specification. IETF-DRAFT, 1998. Available at http://tools.ietf.org/html/draft-
miller-mftp-spec-03, accessed: 12th Feb 2015.

[35] Jim Roskind. QUIC: Multiplexed stream transport over UDP. Google working design document,
2013.

[36] H. Schulzrinne. RTP: A transport protocol for real-time applications. IETF RFC 3550, 2003.
Available at http://tools.ietf.org/html/rfc3550, accessed: 13th Feb 2015.

[37] N. Sebih, F. Weitl, C. Artho, M. Hagiya, M. Yamamoto, and Y. Tanabe. Software model
checking of UDP-based distributed applications. In Proc. Second International Symposium on
Computing and Networking (CANDAR’14), pages 96–105, Shizuoka, Japan, 2014. IEEE.

[38] Nastaran Shafiei and Franck Van Breugel. Automatic handling of native methods in Java
PathFinder. In Proc. International SPIN Symposium on Model Checking of Software (SPIN
2014), San Jose, California, USA, 2014.

[39] Nastaran Shafiei and Peter C. Mehlitz. Extending JPF to verify distributed systems. ACM
SIGSOFT Software Engineering Notes, 39(1):1–5, 2014.

[40] J. Sliwinski, A. Beben, and P. Krawiec. Empath: Tool to emulate packet transfer characteristics
in IP network. In Proc. Second International Workshop, TMA 2010, Zurich, Switzerland, 2010.
Springer Berlin Heidelberg.

[41] Scott D. Stoller and Yanhong A. Liu. Transformations for model checking distributed Java
programs. In Proc. 8th Int. SPIN Workshop (SPIN 2001), pages 192–199, NY, USA, 2001.
Springer-Verlag New York, Inc.

[42] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs. Automated
Software Engineering Journal, 10(2):203–232, 2003.

[43] William Rathje, Brad Richards. A framework for model checking UDP network programs with
Java Pathfinder. HILT ’14 Proceedings of the 2014 ACM SIGAda annual conference on High
integrity language technology, 2014.

401

Software Model Checking of UDP-based Distributed Applications

[44] Piet Van Mieghem Xiaoming Zhou. Reordering of IP packets in internet. In Passive and
Active Network Measurement, 5th International Workshop, PAM 2004, pages 237–246, Antibes
Juan-les-Pins, France, 2004. Springer.

[45] Min Zhang, Maurizio Dusi, Wolfgang John, and Changjia Chen. Analysis of UDP traffic usage
on internet backbone links. In Applications and the Internet, 2009. SAINT’09. Ninth Annual
International Symposium on, pages 280–281. IEEE, 2009.

402

	Introduction
	Background
	Software Model Checking with Java Pathfinder
	Cache-based Model Checking of Networked Systems with net-iocache
	UDP in Java

	Simulation of Unreliable UDP in net-iocache
	Formal Model of Unreliable UDP Transmissions
	Modeling UDP Behavior
	Formalization of UDP Transmissions

	Generating Non-Deterministic UDP Transmissions with JPF
	General Architecture
	Algorithms for Generating Packet Perturbation
	On-the-fly Generation of Non-Deterministic I/O with JPF's Choice Generators
	Configuration of Multiplication Choices and Reordering Buffer
	Limitations

	Implementation of UDP Support in JPF
	Redesign of net-iocache
	Adding support for UDP to net-iocache
	Applying JPF/net-iocache — the User's Perspective

	Experimental Results
	Performance Analysis
	Verifying a UDP-based File Transfer Protocol

	Related Work
	Software Model Checking of Distributed Applications
	Centralization-based Approaches
	Modularization-based Approaches

	Classical Testing of UDP-based Applications
	Analysis of Packet Reordering Across Networks

	Conclusion and Future Work

