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Abstract

In this paper, we present a parallel algorithm for enumerating joint weight of a binary linear (n, k) code,
aiming at accelerating assessment of its decoding error probability for network coding. Our algorithm is
implemented on a multi-core CPU system and an NVIDIA graphics processing unit (GPU) system using
OpenMP and compute unified device architecture (CUDA), respectively. To reduce the number of pairs of
codewords to be investigated, our parallel algorithm reduces dimension k by focusing on the all-one vector
included in many practical codes. We also employ a population count instruction to compute joint weight
of codewords with a less number of instructions. Furthermore, an efficient atomic vote and reduce scheme
is deployed in our GPU-based implementation. We apply our CPU- and GPU-based implementations to a
subcode of a (127,22) BCH code to evaluate the impact of acceleration.

Keywords: Joint weight, joint weight histogram, acceleration, atomics, GPU

1 Introduction
Network coding [1] is a technique for improving transmission efficiency of multicast communication. This
technique allows relay nodes to apply coding arithmetic to incoming messages. Figure 1 shows an example
of multicast communication using network coding over the butterfly network. In this example, the source
node s transmits two messages x and y to sink nodes r1 and r2. On a typical network in Fig. 1(a), where
relay nodes are prohibited to perform coding arithmetic, r1 fails to receive y if v2 transmits x rather than y.
Similarly, r2 fails to receive x if v2 transmits y. In contrast, network coding increases multicast efficiency
by allowing relay node v2 to transmit x ⊕ y to the next node v4, as shown in Fig. 1(b). The operator ⊕ here
represents bitwise exclusive disjunction. The sink node r1 then can extract y from its two incoming messages
x and x ⊕ y. Similarly, r2 can receive both x and y. Li et al. [14] presented that the max-flow bound from
the source node to each sink node can be achieved if relay nodes use a linear transformation as such coding
arithmetic.

In practice, an error-correcting code [17] must be applied to flowing messages to achieve robust commu-
nication against noise. The performance of an error-correcting code C can be assessed by performance met-
rics such as the decoding error probability and error-correcting capability. An error here occurs if a transmit-
ted message is decoded to a codeword v ∈ C that differs from the originally sent codeword u ∈ C (u 6= v).

1A preliminary version [2] was presented at the CANDAR 2014 conference.
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Figure 1: An example of multicast communication using network coding over the butterfly network. (a) Node
r1 fails to receive y if node v2 transmits x rather than y. (b) Network coding allows nodes r1 (r2) to receive
both x and y, because y (x) can be extracted from x (y) and x⊕ y.

High-performance error correction can be achieved by not only maximizing the error-correcting capability
but also minimizing the decoding error probability. Notice here that the meaning of the term “performance”
is different from that usually used in the high-performance computing community, where the performance is
usually associated with timing aspects such as execution time. Thus, rapid computation of the decoding error
probability is useful to design an error-correcting code for practical networks.

For a typical network, where relay nodes transmit incoming messages without applying coding arithmetic,
weight distribution of C is useful to evaluate the decoding error probability. The weight distribution of C is
denoted by an (n+1)-tuple (A0, A1, . . . , An), where n is the length ofC andAi (0 ≤ i ≤ n) is the number of
codewords of Hamming weight i inC [19]. This performance metrics is also useful to assess the performance
of codes for network coding. However, a single error occurred on a network link can affect decoding results
of multiple messages. For example, the sink node r1 in Fig. 1(b) can face with two incorrectly transmitted
messages x and x⊕y if an error occurs on the link between s and v1. In this case, errors in incoming messages
are dependent. Therefore, the decoding error probability for m received codewords cannot be obtained from
weight distribution of C. Instead of weight distribution, it requires m-joint weight distribution of C [13]. In
this work, we deal with the problem of the butterfly network, so that we assume that m = 2 hereafter.

To the best of our knowledge, there is no formula that directly gives joint weight distribution of a code
C except for Hamming code, simplex code, and the first order Reed-Muller code [17]. Consequently, a
joint weight enumerator is needed to compute a joint weight histogram, which stores the occurrence of joint
weight for all 2-tuples (i.e., pairs) (u,v) (u,v ∈ C) of codewords in C. A histogram here is an estimate
of the probability distribution of a variable, and consists of a sequence of bins, which store the frequency of
observations over categories (i.e., intervals of a variable). Consider a binary linear (n, k) code [15] of length
n and dimension k. The binary linear (n, k) code consists of 2k codewords. Its joint weight histogram can
be computed in O(22kn) time, because there are 22k pairs of codewords of length n. This time complexity
exponentially increases with k, so that the joint weight enumeration must be accelerated to assess codes with
large dimension k.

In general, parallel-based solutions using multi-core CPUs or graphics processing units (GPUs) [16] are
attractive methods for achieving acceleration for compute- and memory-intensive applications [8,10,11,25].
Ando et al. [3] presented a parallel algorithm that enumerated joint weight on a multi-core CPU and a GPU.
They exploited data parallelism in enumeration by assigning different pairs of codewords to threads. Their
algorithm employed an efficient mutual exclusion mechanism, because multiple threads could simultaneously
update the same bin of the histogram. Furthermore, joint weight was rapidly computed by a population count
instruction. However, this parallel algorithm can be further accelerated by exploiting theoretical properties
on code structure.

In this paper, we propose a parallel algorithm for enumerating joint weight of a binary linear (n, k) code.
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We extend the previous algorithm [3] by taking advantage of code structure to reduce the number of pairs of
codewords to be investigated. We focus on the fact that many practical codes include the all-one vectors as a
codeword. This assumption reduces the dimension k of the code for efficient enumeration. Similar to [3], our
algorithm employ a population count instruction to rapidly compute joint weight of codewords. Our parallel
algorithm currently runs on a multi-core CPU system and a compute unified device architecture (CUDA)
compatible GPU system [23]. We assume that n ≤ 128 and the target machine is equipped with an NVIDIA
Kepler GPU [22]. We extend our preliminary results [2] with an efficient atomic vote and reduce scheme [7].

The following paper is organized as follows. Section 2 introduces some related studies. Section 3 presents
preliminaries on joint weight enumeration of a code. Section 4 describes our parallel algorithm for enumer-
ating joint weight of a binary linear (n, k) code. Section 5 presents experimental results. Finally, Section 6
shows conclusion and future work.

2 Related Work
Ando et al. [3] implemented a parallel algorithm that enumerated joint weight of a binary linear (n, k) code on
a multi-core CPU. Their CPU-based implementation exploited multiple CPU cores by OpenMP [5], which
achieved multithreading by simply adding compiler directives to the serial code. Furthermore, single in-
struction multiple data (SIMD) instructions, called Streaming SIMD Extensions (SSE) [12], were used to
maximize the performance per CPU core by processing a 128-bit vector data simultaneously. They also pre-
sented a GPU-based implementation that processed thousands of threads simultaneously. Their GPU-based
implementation generated pairs of codewords such that threads could access different memory addresses si-
multaneously. In contrast to the architecture-specific optimization mentioned above, the present work focuses
on code-oriented optimization that accelerate joint weight enumeration on arbitrary architectures.

Some theoretical results are useful to accelerate joint weight enumeration of a binary linear (n, k) code.
The MacWilliams identity [17] is a famous theorem that relates the weight enumerator of a binary linear
(n, k) code to that of its dual code, namely a binary linear (n, n − k) code. According to this theorem,
the time complexity of joint weight histogram computation can be reduced from O(22kn) to O(22(n−k)n)
when k > n− k. Kido et al. [13] applied the MacWilliams identity to an m-joint weight enumerator from a
theoretical point of view.

With respect to weight distribution, Desaki et al. [6] presented a weight enumeration algorithm that ex-
ploited code structure called trellis diagram. Although this algorithm cannot produce joint weight distribution
of a code, their idea can be extended to joint weight enumeration algorithms to reduce the amount of work.

There are many studies that accelerated histogram computation on a GPU. Podlozhnyuk [26] acceler-
ated 256-bin histogram computation for image processing applications. This GPU-based implementation
exploited on-chip shared memory [23] to realize efficient histogram computation. In contrast to this 256-bin
histogram, our target problem requires a joint weight histogram that requires O(n3) space. This relatively
large data cannot be stored entirely in shared memory, whose capacity is in the order of KB. Due to the same
reason, similar approaches [18, 20, 27] that exploited shared memory for histogram computation cannot be
applied directly to our target problem.

Ikeda et al. [10] accelerated joint histogram computation for nonrigid registration of medical images.
Their GPU-based implementation reduces the number of histogram bins by taking advantage of typical dis-
tribution of X-ray intensities. This reduction enables joint histogram data to be stored in on-chip shared mem-
ory. With respect to joint weight of codewords, such a typical distribution is not known. However, the space
complexity of a joint weight histogram can be reduced from O(n3) space to O(n2) space if one of a code-
word pair is given [3]. This reduction allows our algorithm to exploit on-chip memory with higher locality in
joint weight histograms. This localization was effective on CPU-based implementations and GPU-based im-
plementation running on the Fermi architecture [21], but it was not effective on the Kepler architecture [22],
which has a higher atomic instruction throughput than the Fermi.

3 Preliminaries
Let u = (u1u2 · · ·un) ∈ Fn and v = (v1v2 · · · vn) ∈ Fn be vectors of length n, where F is a binary finite
field and ur, vr ∈ F (1 ≤ r ≤ n). Let fpq(u,v) also be the number of r such that ur = p and vr = q, where
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Figure 2: An overview of joint weight enumeration of a code.

Algorithm 1 Brute-force enumeration (J, n, k,W )

Input: Length n, dimension k, and sequence W = (w0,w1, . . . ,w2k−1) of codewords
Output: Joint weight histogram J

1: Initialize J ;
2: for i← 0 to 2k − 1 do parallel
3: for j ← 0 to 2k − 1 do parallel
4: a← f11(wi,wj);
5: b← f10(wi,wj);
6: c← f01(wi,wj);
7: Ja,b,c ← Ja,b,c + 1;
8: end for
9: end for

p, q ∈ F. The joint weight w(u,v) of a pair (u,v) of vectors then is given by a 4-tuple

w(u,v) = (a, b, c, d), (1)

where a = f11(u,v), b = f10(u,v), c = f01(u,v), and d = f00(u,v). For instance, we obtain (a, b, c, d) =
(2, 2, 3, 1) for u = (11110000) and v = (11001110). Since d = n − a − b − c [17], we can omit the last
element d from joint weight (a, b, c, d). Hereafter, we denote a joint weight by a 3-tuple (a, b, c) for simplicity.

Because a, b, and c are numbers enumerated from n elements, we have

0 ≤ a, b, c ≤ n, (2)
0 ≤ a+ b+ c ≤ n. (3)

Figure 2 shows an overview of joint weight enumeration of a code. Joint weight enumeration outputs a
sequence of numbers, each corresponding to the frequency of a tuple (a, b, c) that satisfies Eqs. (2) and (3).
Considering all combinations with repetitions, the number of possible tuples is given by

(
n+3
4

)
.

Let C be a binary linear code. Let Ja,b,c be the number of pairs (u,v) (u ∈ C,v ∈ C) of code-
words that have joint weight (a, b, c). The joint weight distribution of C is then given by a

(
n+3
4

)
-tuple

(J0,0,0, J0,0,1, . . . , Ja,b,c, . . . , Jn,0,0) such that a, b, and c satisfy Eqs. (2) and (3). This distribution can be
stored in a joint weight histogram with

(
n+3
4

)
bins.

Algorithm 1 shows a brute-force parallel algorithm that generates joint weight histogram J from the
length n and dimension k of code C, and a sequence W = (w0,w1, . . . ,w2k−1) of codewords in C. Par-
allelization can be easily achieved by assigning different pairs of codewords to threads. However, an atomic
instruction [23] is needed to compute the histogram correctly, because multiple threads can simultaneously
update the same bin at line 7. An alternative approach is to allow threads to have their own local histogram to
prevent simultaneous access to the same memory address. Although this approach avoids atomic instructions,
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1 int popcount(unsigned int x)
2 {
3 x=(x&0x55555555)+(x>>1&0x55555555);
4 x=(x&0x33333333)+(x>>2&0x33333333);
5 x=(x&0x0f0f0f0f)+(x>>4&0x0f0f0f0f);
6 x=(x&0x00ff00ff)+(x>>8&0x00ff00ff);
7 return (x&0x0000ffff)+(x>>16&0x0000ffff);
8 }

Figure 3: Basic implementation [28] of the popcount function for 32-bit data.

a post-processing stage is needed to merge local histograms into a single global histogram. More details on
this hierarchical organization are presented in [3].

For a multi-core CPU system, the first loop at line 2 can be parallelized using multiple threads by adding
an OpenMP directive [5] such as #pragma omp parallel for. On the other hand, the nested loop
structure from lines 2 to 9 can be replaced with a kernel function call for GPU-based acceleration. The kernel
function implements the loop body from lines 4 to 7 to enumerate joint weight in parallel.

3.1 Joint weight computation
Joint weight w(u,v) = (a, b, c) of a pair (u,v) of codewords can be given by

a = popcount(u ∧ v), (4)
b = popcount(u)− a, (5)
c = popcount(v)− a, (6)

where ∧ is bitwise logical conjunction and popcount(u) is a function that counts the number of bits set
to 1 in the given vector u. Figure 3 shows a naive implementation [28] of the popcount function. This
implementation processes a vector of l = 32 bits in log l steps, which require 20 instructions containing five
additions, five shifts, and ten logical conjunctions.

Instead of this implementation, the previous algorithm [3] employed a single vector instruction to process
a vector of 64 bits. For multi-core CPUs and GPUs, the POPCNT instruction of SSE 4.2 [12] and the
popc instruction of CUDA [23], respectively, were used to implement the popcount function. These vector
instructions require 64-bit data as their operand, so that dn/64e instructions are needed to compute joint
weight of a pair of codeword of length n.

3.2 Reduced enumeration using symmetry
Let w(u,v) = (a, b, c) be the joint weight of pair (u,v) of codewords. The joint weight of the permutated
pair (v,u) then is given by w(v,u) = (a, c, b) [17]. This symmetric relation indicates that joint weight
distribution can be obtained from approximately half of pairs of codewords.

Consider a binary linear (n, k) code C that contains 2k codewords w0,w1, . . . ,w2k−1. Let Ia,b,c be
the number of pairs of codewords such that (wi,wj) has joint weight of w(wi,wj) = (a, b, c), where
0 ≤ i < j < 2k. Let Da,b,c also be the number of pairs of codewords such that (wi,wi) has joint weight of
w(wi,wi) = (a, b, c), where 0 ≤ i < 2k. We then have the following relation:

Ja,b,c = Ia,b,c + Ia,c,b +Da,b,c. (7)

I andD can be obtained from 2k(2k−1)/2 and 2k pairs of codewords, respectively. Therefore, this symmetric
relation reduces the number of pairs of codewords to be investigated from 22k to 2k(2k + 1)/2 ≈ 22k−1.

Algorithm 2 shows a joint weight enumeration algorithm that exploits this symmetry. The nested loop
from lines 2 to 13 computes a joint weight histogram for approximately half of pairs of codewords. The entire
histogram is then serially computed from lines 14 to 20 using Eq. (7).
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Algorithm 2 Symmetric enumeration (J, n, k,W )

Input: Length n, dimension k, and sequence W = (w0,w1, . . . ,w2k−1) of codewords
Output: Joint weight histogram J

1: Initialize J , D, and I;
2: for i← 0 to 2k − 1 do parallel
3: for j ← i to 2k − 1 do parallel
4: a← f11(wi,wj);
5: b← f10(wi,wj);
6: c← f01(wi,wj);
7: if i = j then
8: Da,b,c ← Da,b,c + 1;
9: else

10: Ia,b,c ← Ia,b,c + 1;
11: end if
12: end for
13: end for
14: for a← 0 to n do
15: for b← 0 to n− a do
16: for c← 0 to n− a− b do
17: Ja,b,c ← Ia,b,c + Ia,c,b +Da,b,c;
18: end for
19: end for
20: end for

3.3 Conflict tolerant enumeration on GPU

As compared with the CPU, the GPU is a highly-threaded architecture capable of running thousands of
threads simultaneously. Therefore, the overhead of atomic instructions can be a performance bottleneck in
GPU-based enumeration. To deal with this issue, the previous GPU-based implementation [3] reduced write
conflicts by scanning pairs of codewords such that different threads updated different bins. The symmetry
mentioned in Section 3.2 was used to realize such conflict tolerant enumeration.

Suppose that pairs (u, ∗) and (u′, ∗) of codewords are assigned to threads #1 and #2, respectively, where
∗ is an arbitrary codeword to be investigated. Suppose that popcount(u) = a+ b and popcount(u′) = a′+ b′.
We have a 6= a′ or b 6= b′ if popcount(u) 6= popcount(u′). In this case, threads #1 and #2 update a different
bin, and thus, write conflicts do not occur between them. Therefore, codewords to be investigated should
be classified into groups in terms of popcount value (i.e., Hamming weight). Threads #1 and #2 then are
responsible for pairs (u, ∗) and (u′, ∗) of codewords such that popcount(u) 6= popcount(u′).

A preprocessing stage is required to realize this assignment. That is, codewords should be sorted in
ascending order in terms of Hamming weight. This preprocessing stage can be processed in O(2kn) time,
which is much smaller thanO(22kn), or the time complexity of joint weight distribution computation. Conse-
quently, this sorting operation is processed on a CPU. After this preprocessing stage, joint weight distribution
is computed using Algorithm 2.

Algorithm 3 shows a pseudocode of the previous algorithm for GPU-based enumeration [3]. The prepro-
cessing stage from lines 1 to 10 produces a sequenceW ′ of sorted codewords, which is then given as an input
to Algorithm 2.

4 Proposed Joint Weight Enumeration

Our parallel joint weight enumeration algorithm consists of five acceleration techniques: (1) dimension re-
duction using the all-one vector, (2) efficient atomics on the GPU, (3) joint weight computation with a popu-
lation count instruction (Section 3.1), (4) reduced enumeration using symmetry (Section 3.2), and (5) conflict
tolerant enumeration on the GPU (Section 3.3).
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Algorithm 3 Conflict tolerant enumeration (J, n, k,W )

Input: Length n, dimension k, and sequence W = (w0,w1, . . . ,w2k−1) of codewords
Output: Joint weight histogram J

1: Sort W in ascending order in terms of Hamming weight;
2: W ′ ← ∅;
3: while (W 6= ∅) do
4: for i← 0 to n do
5: if (∃u ∈W such that popcount(u) = i) then
6: Delete u from W ;
7: Add u to W ′;
8: end if
9: end for

10: end while
11: Execute symmetric enumeration (J, n, k,W ′);

4.1 Dimension reduction using all-one vector
Many practical codes such as Bose-Chaudhuri-Hocquenghem (BCH) codes [4,9], Hamming codes, and Reed-
Muller codes include the all-one vector 1 as a codeword. Given such code C, we have

u+ 1 = u ∈ C, for all u ∈ C. (8)

This implies that dimension k can be reduced for enumerating joint weight efficiently. That is, w(u+ 1,v),
w(u,v + 1), and w(u+ 1,v + 1) can be obtained from w(u,v) = (a, b, c, d) as follows:

w(u+ 1,v) = (c, d, a, b), (9)
w(u,v + 1) = (b, a, d, c), (10)

w(u+ 1,v + 1) = (d, c, b, a). (11)

In other words, given codewords u and v, there is no need to generate codewords u+1 and v+1 to compute
their joint weight. Therefore, the number of pairs of codewords can be reduced to quarter.

4.2 Codeword generation with dimension reduction
Before using the dimension reduction technique mentioned above, we have to confirm whether the target
code C includes the all-one vector 1 or not. A straightforward scheme to perform this confirmation is to use
a parity-check matrix H of C: a vector x is a codeword of C if H · xT = 0, where xT is the transpose of x.
Otherwise, the dimension reduction technique cannot be used for enumeration. Although this scheme detects
the all-one vector in C, it is not clear which codeword must be generated for enumeration.

Our alternative scheme is as follows. Let G be the canonical generator matrix [17] of a binary linear
(n, k) code C. G can be represented as G = [ Ik|P ], where Ik is the k × k identity matrix and P is a
k × (n− k) matrix.

1. Replace the bottom row Gk of G with summation of rows,
∑

1≤i≤kGi, where Gi represents the i-th
row of G.

2. Check the bottom row Gk to detect the all-one vector.

(a) If Gk = 1T, code C includes the all-one vector 1. We then eliminate Gk from G, because
codewords u+1 and v+1 are not needed to compute their joint weight, as mentioned in Section
4.1. This elimination reduces the dimension of C, because the generator matrix is then given by
G = [ Ik−1|P ′ ], where P ′ is a (k − 1)× (n− k) matrix.

(b) Otherwise, code C does not include the all-one vector 1.

3. Use G to generate the codewords of C.
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Similar to the sorting operation presented in Section 3.3, we decided to serially process this preprocessing
stage on a CPU.

4.3 Efficient atomics on GPU

Our conflict tolerant enumeration in Section 3.3 intends to reduce the number of conflicts caused by atomic
instructions. Although the Kepler architecture [22] achieves 9 times higher atomic instruction throughput
than the previous Fermi architecture [21], it is significantly lower than the peak memory bandwidth available
on the GPU. To deal with this problem, we integrate an efficient atomic scheme [7] into our GPU-based
implementation. This scheme reduces the number of conflicts among threads in a warp [23] in which threads
execute the same instruction at the same time. In other words, threads in a warp can cause many conflicts
owing to their simultaneous behavior, but at the same time, this simultaneous behavior is useful to detect and
eliminate such intra-warp conflicts before accessing data atomically.

There are three variations in this atomic scheme: atomic vote and reduce (atomicVR), atomic scan and
reduce (atomicSR) and atomic set scatter (atomicSS) algorithms. Among these three variations, we use the
atomicVR algorithm, which is efficient for non-clustered conflicts frequently appeared in histogram compu-
tation and graph traversal [7]. Non-clustered conflicts here correspond to situations in which the conflicting
threads appear randomly in the warp. Firstly, the atomicVR algorithm obtains the memory address of a ran-
domly selected thread in a warp. It then executes the __ballot() function to compute the number of
threads that access the same memory address. If this number is smaller than a threshold α, the algorithm per-
forms the naive atomic instruction. Otherwise, the algorithm locally reduces the values of the corresponding
threads in parallel. Because this parallel reduction is carried out within a warp, where threads are implic-
itly synchronized each other, barrier synchronization is not necessary for this reduction. A representative
thread then writes the reduced value to the memory address atomically. We experimentally determined to use
α = 16 in our implementation (see Section 5).

Note that the atomicSR algorithm is efficient for clustered conflicts such as those observed in sparse ma-
trix vector multiplication. In this case, the conflicting threads have consecutive thread indexes. Consequently,
local parallel reduction is useful to eliminate conflicts within a warp. Finally, the atomicSS algorithm clas-
sifies threads in a warp in terms of the memory addresses they access, and then iteratively generates a group
of threads that access different memory addresses. Owing to this classification and iteration, the atomicSS
algorithm incurs a relatively large overhead compared to the atomicVR and atomicSR algorithms.

5 Experimental Results

To evaluate the performance of our parallel algorithm, we compared our implementation with the previous
implementation [3] in terms of execution time. Table 1 shows the specification of our experimental ma-
chines. Our machines had a 4-core Core i7 CPU and two 10-core Xeon E5 CPUs, respectively. In addition,
these machines were equipped with a GTX 680 GPU and a Tesla K40 GPU, respectively. Both GPUs were
based on the Kepler architecture [22]. The error check and correct (ECC) capability of the K40 card was
turned off during measurement. The algorithms were implemented using OpenMP to realize multithreaded
enumeration. We created two threads per CPU core to take advantage of hyperthreading technology.

We used a subcode of the (127,22) binary BCH code [4, 9] of dimension t (≤ k), where 11 ≤ t ≤ 22.
Consequently, a joint weight histogram was computed for 2t codewords. The bin size of the global joint
weight histogram was set to 8 bytes, because the maximum value of a bin could reach 22t, where 11 ≤ t ≤ 22.
On the other hand, the bin size of local joint histograms was set to 2 bytes and 4 bytes for the CPU- and GPU-
based implementations, respectively [3].

As mentioned above, our GPU-based implementation uses α = 16 as a threshold for switching the atomic
implementation. We measured the execution time of our joint weight enumeration program with varying α
from 1 to 32. We then selected the best value α = 16, which minimized the execution time for the largest
dimension t = 22. The worst result was obtained with α = 1, which was roughly 30% slower than α = 16
for all 11 ≤ t ≤ 22.
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Table 1: Specification of experimental machines.
Item Machine #1 Machine #2
# of CPU sockets 1 2
CPU Core i7 3770K Xeon E5-2680v2
# of cores per socket 4 10
Frequency 3.5 GHz 2.8 GHz
Main memory capacity 16 GB 512 GB
Peak memory bandwidth 25.6 GB/s 51.2 GB/s
GPU GTX 680 Tesla K40
# of cores 1536 2880
Core clock frequency 1006 MHz 745 MHz
VRAM capacity 2 GB 12 GB
Peak memory bandwidth 192 GB/s 288 GB/s
PCI Express bus 3.0 ×16 3.0 ×16
OS Ubuntu 12.04 64-bit Ubuntu 13.10 64-bit
C++ compiler GCC 4.6.3 GCC 4.8.2
Graphics driver 340.29
CUDA 6.5
Compile option -arch sm_30 -O3 -arch sm_35 -O3

5.1 Performance Comparison

We first present results with the largest dimension t = 22 to facilitate understanding of typical results. Figure
4 shows the execution times for n = 127 and t = 22. The execution times of GPU-based implementations
include the transfer time needed to copy data between the CPU and GPU. On all CPUs and GPUs except
for the K40 card, our dimension reduction technique reduced the execution time to quarter. These timing
results are the same as what expected in Section 4.1. On the K40 card, our dimension reduction technique
reduced the execution time from 36.3 to 10.5 seconds, achieving a speedup of 3.5×. This implies that our
dimension reduction technique slightly reduced its effectiveness on the K40 card. Because our dimension
reduction technique reduced the number of kernel invocations into quarter, the K40 card slightly degraded
the efficiency of kernel execution. Unfortunately, we could not identify the reason for this internal behavior.
The highest performance was obtained on the Xeon processors, which reduced the execution time from 18.5
to 4.6 minutes (1,111 to 275 seconds). The speedup over the previous algorithm reached a factor of 4.03,
which was slightly higher than a factor of 4. With respect to GPU-based implementations, the atomicVR
algorithm further reduced execution time by 5% and 3% on the GTX 680 card and the K40 card, respectively.

Because the K40 card had a higher memory bandwidth than the GTX 680 card, we expected that the
former would outperform the latter for this memory-intensive application. However, we found that the GTX
680 card was 1.34 (= 10.2/7.6) times faster than the K40 card for this application. Because this speedup ratio
is close to the clock frequency ratio (1006/745 = 1.35), we think that the core clock frequency rather than
the memory bandwidth determines the performance of our GPU-based implementation. In fact, the worst
throughput of atomic instructions on the Kepler architecture is 1 instruction per clock, which is obtained
when threads access the same address simultaneously [24]. Consequently, the atomic instruction is still the
performance bottleneck of our algorithm, though write conflicts are reduced by sorting codewords and using
the atomicVR algorithm. Actually, when t = 22, only 564 histogram bins had non-zero values, which ranged
from 1 to 773,930,601,234. Because the atomicVR algorithm avoids intra-warp conflicts, inter-warp conflicts
must be avoided to achieve further performance improvement.

Our algorithm requires a preprocessing stage on the CPU. Both the CPU- and GPU-based implemen-
tations generate codewords before computing the joint weight histogram. The GPU-based implementation
then sorts codewords and transfers them to the GPU. We found that the preprocessing overhead was negli-
gible against the entire execution time. For example, when t = 22, the preprocessing time and the transfer
time were approximately 0.009% and 0.002% of the execution time on the GTX 680 card, respectively. The
performance of our algorithm is dominated by joint weight distribution computation.

Figure 5 shows the execution times for n = 127 and 11 ≤ t ≤ 22. Notice that a logarithmic scale
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Figure 4: Execution times of the proposed algorithm and the previous algorithm [3] (t = 22).

is used for the vertical axis. As compared with the previous algorithm, our dimension reduction technique
successfully reduced the execution time for all t. The atomic scheme further reduced the execution time
for all t, but its impact was limited: the improvement ratio over the previous algorithm remained constant
(approximately 3–5%) for all 11 ≤ t ≤ 22. However, the speedup was lower than a factor of 3 for small
t < 17. Such small problems can be completed within 1 second, and thus, reducing the kernel execution time
was not so effective.

When t ≤ 16, the Xeon processors failed to outperform the Core processor, and its execution time did
not increase with t. This is due to the memory allocation overhead. For example, memory allocation on this
big memory machine took 0.4 seconds, whereas the execution time at t = 16 was 0.76 seconds.

5.2 Efficiency Analysis
We next analyzed the efficiency of the implementations in terms of memory throughput, because access to
histogram bins determined their performance. The effective memory throughput is given by B = AM/T ,
where A, M , and T are the number of pairs of codewords, the amount of memory reads/writes per pair, and
the execution time, respectively. Note that the execution time T here includes the preprocessing time and
the transfer time mentioned above. For each pair of codewords of length n, our implementation updates an
8-byte bin. Therefore, we have M = 2 dn/8e+8 in byte. Considering combinations of two codewords to be
selected from the total 2t codewords, we have A =

(
2t

2

)
for algorithms without dimension reduction. With

dimension reduction, we have A =
(
2t−1

2

)
.

Figure 6 shows the effective memory throughputs of the implementations. When t = 22, the effective
memory throughputs of the GTX 680 and K40 reached 193.3 GB/s and 144.0 GB/s, respectively. These
results were equivalent to 100.6% and 50.0% of the peak memory bandwidth, respectively. The former
slightly exceeds 100%, demonstrating the effectiveness of hierarchical histogram organization mentioned in
Section 3. That is, local histograms are small enough to fit into the GPU cache called shared memory [23].
Therefore, the memory bandwidth was efficiently saved using the shared memory, increasing the effective
memory throughput close to the peak memory bandwidth.

Without the atomicVR algorithm, the efficiency reduced to 95.1% and 48.4% (182.7 GB/s and 139.3
GB/s) on the GTX 680 and K40, respectively. Without our conflict tolerant enumeration, the efficiency further
reduced to 63.2% and 28.9% (121.5 GB/s and 83.2 GB/s) on the GTX 680 and K40, respectively. Thus, write
conflicts were mainly eliminated by conflict tolerant enumeration rather than the atomicVR algorithm.

With respect to CPU-based results, we found that the effective memory throughputs were higher than
the peak memory bandwidth. Similar to GPU-based results, this behavior can be explained by cache hits.
Actually, a local joint weight histogram for n ≤ 128 can be stored in a memory region of approximately
17 KB [3], which is smaller than the capacity of L1 cache (32 KB). Consequently, the instruction issue rate
determines the performance of our CPU-based implementation. According to this analysis, the two Xeon
processors are 4 times faster than the single Core processor, because the formers have five times more physical
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Figure 5: Execution times of the proposed algorithm and the previous algorithm [3] (11 ≤ t ≤ 22). Results
on (a) GTX 680, (b) K40, (c) Core i7 and (d) Xeon E5.

cores but with 20% slower clock rate than the latter. Actually, the Xeon processors achieved approximately
4.3 times higher memory throughput than the Core processor when t = 22.

Finally, Fig. 7 shows the speedup over a single-core version on the Core and Xeon processors, which
have 4 and 20 physical cores, respectively. The performance of our implementation linearly increased with
the number of threads. This performance behavior also explains why the memory throughputs are higher than
the peak memory bandwidth. Because local histograms were entirely stored in the L1 cache, the performance
was mainly dominated by the instruction issue rate. Therefore, the performance increased with the number
of physical cores to be exploited for enumeration. Owing to the hyperthreading technology, the performance
slightly increased after assigning the second threads to CPU cores.

6 Conclusion

In this paper, we presented a parallel algorithm for enumerating joint weight of a binary linear (n, k) code.
Our algorithm reduces the number of pairs of codewords to be investigated. To realize this, we reduce the
dimension k of the code by focusing on the all-one vector, which is included in typical error-correcting
codes. Our algorithm also employ a population count instruction to reduce the number of instructions needed
to compute joint weight. In addition, we sort codewords in terms of Hamming weight to realize conflict
tolerant enumeration. An efficient atomic scheme [7] is integrated into our GPU-based implementation to
avoid conflicts within a warp.

Our experimental results showed that the dimension reduction reduced the execution time to quarter on
multi-core CPUs and a GPU. We also found that the performance of our GPU-based implementation was
dominated by the core clock speed of the GPU. Similarly, our CPU-based implementation had a performance
bottleneck in the instruction issue rate.

Future work includes further exploitation of code structure such as trellis diagram [6]. The MacWilliams
identity is also useful to accelerate enumeration for codes of large dimension. We also plan to evaluate our
algorithm with other practical codes.
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Figure 6: Effective memory throughputs measured during parallel joint weight enumeration. Results on (a)
GTX 680, (b) K40, (c) Core i7 and (d) Xeon E5.
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