
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 5, Number 2, pages 272–289, July 2015

Hypercube Fault Tolerant Routing with Bit Constraint

Antoine Bossard

Graduate School of Science
Kanagawa University

Tsuchiya 2946, Hiratsuka, Kanagawa, Japan 259-1293

Keiichi Kaneko

Graduate School of Engineering
Tokyo University of Agriculture and Technology

Nakacho 2-24-16, Koganei, Tokyo, Japan 184-8588

Received: February 12, 2015
Revised: May 1, 2015
Accepted: June 1, 2015

Communicated by Susumu Matsumae

Abstract

Thanks to its simple definition, the hypercube topology is very popular as interconnection
network of parallel systems. There have been several routing algorithms described for the
hypercube topology, yet in this paper we focus on hypercube routing extended with an additional
restriction: bit constraint. Concretely, path selection is performed on a particular subset of
nodes: the nodes are required to satisfy a condition regarding their bit weights (a.k.a. Hamming
weights). There are several applications to such restricted routing, including simplification of
disjoint paths routing. We propose in this paper two hypercube routing algorithms enforcing
such node restriction: first, a shortest path routing algorithm, second a fault tolerant point-to-
point routing algorithm. Formal proof of correctness and complexity analysis for the described
algorithms are conducted. We show that the shortest path routing algorithm proposed is time
optimal. Finally, we perform an empirical evaluation of the proposed fault tolerant point-to-
point routing algorithm so as to inspect its practical behaviour. Along with this experimentation,
we analyse further the average performance of the proposed algorithm by discussing the average
Hamming distance in a hypercube when satisfying a bit constraint.

Keywords: supercomputer, parallel system, network, cube, disjoint path, dependable system

1 Introduction

Due to its simplicity, the hypercube topology is very popular as interconnection network of parallel
systems: hardware and software implementations are effectively greatly simplified compared for
instance to permutation-based networks [1]. Hypercubes have been in use from the early days of
supercomputing with the Cosmic Cube [2], and up to now with very recent examples of massively
parallel machines such as the NASA Pleiades and the NOAA Zeus supercomputers [3]. Not only are
hypercubes popular as interconnection network on their own, but they are also very popular as seed

272



International Journal of Networking and Computing

for advanced network topologies such as those employed by hierarchical interconnection networks
(HINs). Hierarchical hypercubes [4, 5, 6, 7], hierarchical cubic networks [8, 9, 10], metacubes [11, 12],
dual-cubes [13, 14] are some examples.

The literature includes several hypercube routing algorithms, with a few variants such as disjoint
paths routing, fault tolerant routing and cluster fault tolerant routing [16, 17, 18, 19]. Yet, these
previous algorithms do not allow for enforcing any kind of restriction on the nodes selected by the
routing process. Extending routing algorithms to enable node restriction (a.k.a. constraint) has
however useful applications. This is for example a simple way to select mutually node disjoint
paths between distinct pairs of nodes: by generating multiple paths that enforce distinct node
constraints, we are ensured that no node will be used by more than one path. For instance, if
we apply the algorithm proposed in this paper, we can solve the k-pairwise disjoint paths routing
problem in n-dimensional hypercubes in order O(kn) time (k ≤ dn/2e). The previous work by Gu
and Peng [15] solves this problem in O(n2 log∗ n) time with k = dn/2e and log∗ n the smallest j
such that logj n ≤ 2. Disjoint paths routing is actually a critical topic for parallel and distributed
systems as such routing algorithms guarantee that the notorious resource allocation problems such
as deadlocks, livelocks and starvations will never occur. In addition, because of the huge number
of computing nodes present in modern parallel systems, there is a high probability that some faults
(i.e. broken nodes) will be encountered, thus making fault tolerance an essential characteristic for
routing algorithms. Additionally, routing inside specific embedded networks of hypercubes becomes
easy when using routing algorithms that satisfy some node constraint. The hypercube sub-network
consisting of the nodes with one or two bits set to 1 is an example of such embedded network. The
decomposition of a hypercube into several such sub-networks and their manipulation (e.g. data
communication) as disjoint entities of a same network is thus greatly facilitated. A hyper-star graph
[20, 21] is an example of previous work dealing with such hypercube nodes subsets.

We focus in this paper on a node restriction of type “bit constraint”. In practice, and as detailed
later in Section 2, such constraint is defined as a tuple of the form (i, i+1, . . . , i+β) with i a positive
integer. We described in Section 3 a shortest path routing algorithm satisfying a bit constraint
γi = (i, i + 1) in an n-dimensional hypercube, that is the selection of a shortest path whose all
nodes satisfy γi. Then, we propose in Section 4 a fault tolerant routing algorithm satisfying a bit
constraint γi = (i, i + 1) in an n-dimensional hypercube. The maximum number of faulty nodes
tolerated is min(n− i, i+ 1)− 1. We formally prove in Sections 3.3 and 4.3 the correctness of these
two algorithms, and formally establish their complexities as well (i.e. time complexity, maximum
path length). In addition, we show in Section 3.3 that the shortest path routing algorithm of Section
3 is time optimal. Next, in Section 5, an empirical evaluation of the proposed fault tolerant routing
algorithm is conducted. Lastly, Section 6 concludes this paper.

2 Preliminaries

We introduce in this section several definitions and notations used in this paper.

Definition 1. An n-dimensional hypercube Qn consists of 2n nodes, each having a unique n-bit
address. Two nodes u and v of a hypercube are adjacent if and only if their Hamming distance
H(u, v) is equal to one.

A Qn is symmetric and of connectivity, degree and diameter n [22]. The average distance (i.e.
the average length of a shortest path) between two nodes in a hypercube is discussed in appendix.
Also, a Qn is recursive: for any dimension δ (0 ≤ δ ≤ n−1), a Qn consists of two (n−1)-dimensional
hypercubes Q0

n−1 and Q1
n−1. The subcube Q0

n−1 (resp. Q1
n−1) is induced by the set of nodes of Qn

whose δ-th bits are set to 0 (resp. 1). As illustration, a 4-dimensional hypercube Q4 is given in
Figure 1.

It is assumed that for a hypercube, each node address can be stored in a fixed number of machine
words, thus allowing constant time complexity for the operations such as node comparison, most
significant bit (MSB) detection and the calculation of the Hamming distance and the bit weight (see
Definition 2). Also, as usual, logarithms mentioned in this paper are all in base two.

273



Hypercube Fault Tolerant Routing with Bit Constraint

Q0
3 Q1

3

0000

0100

0010

0110

1100 1110

10101000

00110001

0101 0111

11111101

10111001

Figure 1: An example of a 4-dimensional hypercube Q4 with δ = 0.

Definition 2. For a binary n-bit sequence b = bn−1 . . . b1b0, bi ∈ {0, 1}, 0 ≤ i ≤ n − 1, the bit
weight of b, denoted by w(b), corresponds to the number of bits of b that are set to ‘1’.

We recall that the bit weight of a node is also called the Hamming weight. In this paper,
the MSB of a bit sequence is the leftmost bit. The bit flip operation is defined and denoted as
follows: u(i) = u XOR 2i with XOR denoting the exclusive-or bitwise operation. Also, we define
u(i,j) = (u(i))(j). Besides XOR, the AND and NOT bitwise operations (bitwise conjunction and
bitwise negation, respectively) are also used hereinafter.

Definition 3. A k-constraint is a k-tuple of distinct natural numbers (i1, i2, . . . , ik).

We focus in this work on 2-constraints applied to the bit weight of a node; hereinafter we simply
speak of “bit constraint”, denoted by a pair (i, j). Moreover, since in a hypercube adjacent nodes
have one single bit different, bit constraints considered here all have the form (i, i+ 1). One should
note that in the case k-constraints on hypercubes would be considered, bit constraints would have
the form (i, i+ 1, . . . , i+ β) with i+ β ≤ n.

Definition 4. In a hypercube Qn, for i ∈ N and 0 ≤ i ≤ n − 1, a node u satisfies the constraint
(i, i+ 1) if and only if w(u) = i or w(u) = i+ 1 holds.

Let γi denote the (i, i + 1) bit constraint. For instance, in a Q3, the three nodes 010, 110 and
100 all satisfy the constraint γ1 = (1, 2) whereas the node 111 does not.

We recall that a path p in a network is an alternate sequence of nodes and edges: p = u1, (u1, u2),
u2, . . . , uk, with (u1, u2) denoting the edge between the nodes u1 and u2. This path p can be similarly
denoted by u1 → u2 → . . . → uk and simplified to u1 ; uk. The length of a path corresponds to
its number of edges; it is denoted by L(p) for any path p. Two paths are node disjoint (or simply
disjoint) if and only if they have no node in common.

Definition 5. A path p connecting a node u to a node v satisfies the constraint γi = (i, i+ 1) if and

only if each of all nodes of p satisfies γi. We write u
γ
; v.

It can thus be deduced that in a hypercube, as the Hamming distance between any two adjacent
nodes is equal to one, a path cannot satisfy a constraint other than that of the form (i, i + 1) (or
(i, i− 1), which is equivalent).

Lastly, for a hypercube reduced into two subcubes according to a bit position, we distinguish a
set of paths of lengths at most two that connect a node of one subcube to a node of the other.

Definition 6. In a Qn reduced into two subcubes Q0
n−1 and Q1

n−1 according to a bit position δ
(0 ≤ δ ≤ n− 1), given a node u, the set of n paths Πδ

u is defined as:

Πδ
u =

{
u→ u(δ),
u→ u(i) → u(i,δ) 0 ≤ i ≤ n− 1, i 6= δ

}
In other words, the paths of Πδ

u have lengths two except for u→ u(δ) which is of length one, and
they are all node disjoint except for u. In addition, the two nodes u and u(i) are located inside the
same subcube, whereas the two extremal nodes of these paths are located inside distinct subcubes.

274



International Journal of Networking and Computing

3 Hypercube shortest path routing with γi constraint

In a Qn, for two nodes s and d that both satisfy the constraint γi, we describe a routing algorithm

that selects a shortest path p : s; d such that p satisfies γi (a.k.a. p : s
γ
; d), i.e. exclusively made

of nodes of Qn that satisfy γi. We obviously have L(p) = H(s, d).

3.1 Algorithm description

Given any two nodes u, v, we first define the sets ∆u,v and Θu: ∆u,v is the set of the bit positions
whose values differ between u and v; Θu is the set of the bit positions of u that can be flipped while
still satisfying the considered constraint. For example in a Q4 with γ2 = (2, 3), given u = 1011 and
v = 1100, we have ∆u,v = {2, 1, 0} and Θu = {3, 1, 0}. The main and natural idea of this algorithm
is to flip bits according to these two sets ∆ and Θ.

Step 1. Compute the set ∆s,d ∩ Θs corresponding to the bit positions of s that can be flipped so
as to obtain a node satisfying γi and that is on a shortest path towards d.

Step 2. Pick an arbitrary bit position from the previously calculated set ∆s,d ∩ Θs and flip the
corresponding bit of s; we obtain a new node, say s′.

Step 3. Redefine s as s′ and go to Step 1. Repeat until reaching d.

We give a pseudo-code of this shortest path routing algorithm in Algorithm 1. This algorithm
uses a subsidiary procedure which is called by the statement “return subroutine(s, s)”.

Algorithm 1 HC-SPR-CONS(n, i, s, d)

Input: A Qn, a bit constraint γi = (i, i+ 1), a source node s and a destination node d.

Output: A shortest path s
γ
; d in Qn satisfying γi.

1: procedure subroutine(s, p)
2: if s = d then
3: return p
4: else
5: U := ∆s,d ∩Θs;
6: {u1, u2, . . . , u|U |} := U ;
7: s′ := s XOR 2u1 ;
8: return subroutine(s′, p→ s′)
9: end if

10: end procedure
11: return subroutine(s, s)

3.2 Routing example

In a 4-dimensional hypercube Q4, for a source node s : 1011, a destination node d : 1100, and a bit
constraint γ2 = (2, 3), we give an execution trace of the algorithm of Section 3.1 in Table 1. As a
result, the shortest path s : 1011→ 1010→ 1110→ d : 1100 satisfying the bit constraint γ2 = (2, 3)
is selected.

3.3 Correctness and complexities

The algorithm of Section 3.1 is rather straightforward, the main issue being proving its correctness.
This is the objective of this section.

Lemma 1. The algorithm of Section 3.1 is correct and always terminates.

275



Hypercube Fault Tolerant Routing with Bit Constraint

Table 1: Shortest path routing example in a Q4 with γ2 = (2, 3) bit constraint.

s d ∆s,d Θs ∆s,d ∩Θs

1011 1100 {2, 1, 0} {3, 1, 0} {1,0}

selected: s : 1011→ s′ : 1010

1010 1100 {2, 1} {2, 0} {2}

selected: 1011→ 1010→ 1110

1110 1100 {1} {3, 2, 1} {1}

selected: 1011→ 1010→ 1110→ d : 1100

Proof. First, it is trivial to show that the selected path is shortest and satisfies the constraint: each
node selected in Step 2 is taken from the set of nodes that reduce the distance to d by one bit flip
(precisely the set of differing bit positions ∆s,d), thus making the path shortest, and additionally,
this set of nodes is further restricted to the nodes satisfying the constraint (precisely the set of
“flippable” bit positions Θs). Now, we either show that s = d or that the set ∆s,d ∩Θs contains at
least one node. In other words, in either case the algorithm terminates.

We recall that both s and d satisfy γi = (i, i+1). Assume without loss of generality that ∆s,d 6= ∅.
Effectively, if ∆s,d = ∅, we would have s = d and a shortest path s

γ
; d satisfying the constraint γi

would be found.

Assume w(s) = i. Now, assume ∆s,d includes no bit position where s is set to ‘0’. In other
words, we assume that ∆s,d ∩Θs = ∅. Then it means that all bits of s set to ‘0’ are set to ‘0’ on d
as well. Now, since d satisfies γi, it means that the n− (n− i) = i remaining bits of d are set to ‘1’.
Thus s = d. So, we have shown that ∆s,d∩Θs = ∅ ⇒ s = d. In other words, s 6= d⇒ ∆s,d∩Θs 6= ∅.

Assume w(s) = i + 1. Now, assume ∆s,d includes no bit position where s is set to ‘1’. In other
words, we assume that ∆s,d ∩ Θs = ∅. Then it means that all bits of s set to ‘1’ are set to ‘1’ on
d as well. Now, since d satisfies γi, it means that the n − (n − (i + 1)) = i + 1 remaining bits of
d are set to ‘0’. Thus s = d. So, we have shown that ∆s,d ∩ Θs = ∅ ⇒ s = d. In other words,
s 6= d⇒ ∆s,d ∩Θs 6= ∅.

Therefore, we have shown the correctness of the algorithm of Section 3.1.

Lemma 2. The algorithm of Section 3.1 is O(H(s, d)) optimal time.

Proof. The sets ∆ and Θ are expressed as bit patterns, each included in one machine word. Hence,
set calculation in Step 1 can be done in O(1) constant time (∆ directly obtained with one XOR
operation; Θ with one bit weight operation: if w(u) = i + 1 then Θu = u, otherwise Θu = NOT u,
which is also O(1) time). The intersection of ∆ and Θ can be calculated by one AND operation,
which is O(1) time. Step 2 is obviously O(1) time as well (it corresponds to one bit flip operation).
Step 3 triggers the repetition of the algorithm until reaching d, that is O(H(s, d)) times since each
node selected in Step 2 is on a shortest path towards d. Hence, the total time complexity of this
algorithm is O(H(s, d)), which is obviously optimal.

Thus, we can summarise this discussion in the theorem below.

Theorem 1. In a Qn, given any two distinct nodes s and d and a bit constraint γi = (i, i+ 1), we

can select a shortest path s
γ
; d (i.e. of length H(s, d)) satisfying γi in O(H(s, d)) optimal time.

Proof. This can be directly deduced from Lemmas 1 and 2.

276



International Journal of Networking and Computing

4 Hypercube fault tolerant point-to-point routing with γi
constraint

First, given a node u ∈ Qn satisfying γi = (i, i + 1), let us discuss the number of its neighbours
that satisfy γi. If w(u) = i + 1, then u has i + 1 neighbours satisfying the constraint. If w(u) = i,
then u has n − i neighbours satisfying the constraint. Therefore, in a Qn, given two non-faulty

nodes s, d satisfying γi, we can select a fault-free path s
γ
; d that satisfies γi = (i, i+ 1) with a set

F of at most min(n − i, i + 1) − 1 faulty nodes (this is an application of Menger’s theorem [23]).
In addition, one can note that in the case i = 0, the maximum number of faulty nodes becomes
min(n− i, i+ 1)− 1 = 0 and thus Qn is fault-free and it is more efficient to apply the shortest path
routing algorithm of Section 3.1. So, let us assume that i ≥ 1.

4.1 Algorithm description

If n− i = 0, the constraint γi = (i, i+ 1) cannot be satisfied as i+ 1 > n. If n− i = 1, the maximum
number of faulty nodes becomes min(n − i, i + 1) − 1 ≤ 0 and thus Qn fault free and we directly
apply the routing algorithm of Section 3.1. So, we can assume that n− i ≥ 2.

First, if Qn is fault free, we directly apply the algorithm of Section 3.1. So, we can assume that
Qn includes at least one faulty node. The main idea of this algorithm is to reduce Qn into two
subcubes Q0

n−1 and Q1
n−1 as explained in Section 2 and apply the algorithm recursively in one of

these two subcubes.

Step 1. If |F | = 1, pick an arbitrary bit position δ (0 ≤ δ ≤ n− 1). If |F | ≥ 2, find a bit position
δ (0 ≤ δ ≤ n− 1) to reduce Qn such that Q0

n−1 and Q1
n−1 each include at least one fault (i.e.

both F ∩Q0
n−1 6= ∅ and F ∩Q1

n−1 6= ∅ hold).

Step 2. We distinguish several cases below.

Assume s, d are in distinct subcubes, say s ∈ Qn−1(s) and d ∈ Qn−1(d). Assume further
that Qn−1(d) is the most faulty, that is |F ∩ Qn−1(d)| ≥ |F ∩ Qn−1(s)|. If |F ∩ Qn−1(d)| <
|F ∩Qn−1(s)|, the same discussion holds by exchanging the roles of s and d.

Case d ∈ Q1
n−1 and w(d) = i. Select a fault-free path of length two of Πδ

d that satisfies γi
and connecting d to a non-faulty node d′ of Q0

n−1. Apply the algorithm recursively in

Q0
n−1 with γi = (i, i+ 1) the constraint to find a fault-free path s

γ
; d′. See Figure 2.

Q0
3 Q1

3

s : 1100

d′ : 1010

d : 0011

1011

0111 ∈ F

Q0
3 (F = ∅)

s : 1100

d′ : 1010

shortest path routing

Figure 2: Illustration of Step 2, Case s ∈ Q0
n−1, d ∈ Q1

n−1 and w(d) = i. In a Q4 with reduction
bit δ = 0 and constraint γ2 = (2, 3), d is connected to a node d′ ∈ Q0

3 and the algorithm solved
recursively in Q0

3.

Case d ∈ Q1
n−1 and w(d) = i+ 1. If the unique path of length one of Πδ

d is fault-free, it is
selected, say d → d′. Otherwise, consider the fault-free paths of lengths two of Πδ

d, say

d → d′′j → d̃j , with d′′j satisfying γi. For each of them, replace the edge d′′j → d̃j by

the path of length two d′′j → d′′′j → d′j where d′′′j = (d′′j )(α), d′j = (d′′′j )(δ) and α is a bit
position such that the α-th bit of d is set to 0. Select one of these paths of lengths three

277



Hypercube Fault Tolerant Routing with Bit Constraint

that is fault-free, say d→ d′′ → d′′′ → d′. Apply the algorithm recursively in Q0
n−1 with

γi = (i, i+ 1) the constraint to find a fault-free path s
γ
; d′. See Figure 3.

Q0
4 Q1

4

d : 1110001100
10100

1010100101

11000

1100101001

Figure 3: Illustration of Step 2, Case d ∈ Q1
n−1 and w(d) = i+ 1. In a Q5 with reduction bit δ = 4

and constraint γ2 = (2, 3), three candidate disjoint paths that satisfy γ2 connecting d ∈ Q1
4 to a

node of Q0
4.

Case d ∈ Q0
n−1 and w(d) = i+ 1. Select a fault-free path of length two of Πδ

d that satisfies
γi and connecting d to a non-faulty node d′ of Q1

n−1. Apply the algorithm recursively in

Q1
n−1 with γi−1 = (i− 1, i) the constraint to find a fault-free path s

γ
; d′.

Case d ∈ Q0
n−1 and w(d) = i. If the unique path of length one of Πδ

d is fault-free, it is selected,
say d→ d′. Otherwise, consider the fault-free paths of lengths two of Πδ

d, say d→ d′′j →
d̃j , with d′′j satisfying γi. For each of them, replace the edge d′′j → d̃j by the path of length

two d′′j → d′′′j → d′j where d′′′j = (d′′j )(α), d′j = (d′′′j )(δ) and α is a bit position such that
the α-th bit of d is set to 1. Select one of these paths of lengths three that is fault-free,
say d → d′′ → d′′′ → d′. Apply the algorithm recursively in Q1

n−1 with γi−1 = (i − 1, i)

the constraint to find a fault-free path s
γ
; d′.

Assume s, d are inside the same subcube.

Case s, d ∈ Q0
n−1. If |F ∩Q0

n−1| ≤ |F ∩Q1
n−1|, apply this algorithm recursively in Q0

n−1 with
γi = (i, i + 1) the constraint. Assume |F ∩Q0

n−1| > |F ∩Q1
n−1|. Depending on whether

w(d) = i or w(d) = i+ 1 holds, select as described previously a fault-free path of length
at most three that satisfies γi connecting d to a node d′ of Q1

n−1. Similarly, depending on
whether w(s) = i or w(s) = i + 1 holds, select as described previously a fault-free path
of length at most three that satisfies γi connecting s to a node s′ of Q1

n−1. If these two

paths s
γ
; s′ and d

γ
; d′ are not disjoint, then a path s

γ
; d is found. Otherwise, apply

the algorithm recursively in Q1
n−1 with γi−1 = (i− 1, i) the constraint to find a fault-free

path s′
γ
; d′.

Case s, d ∈ Q1
n−1. If |F ∩Q1

n−1| ≤ |F ∩Q0
n−1|, apply this algorithm recursively in Q1

n−1 with
γi−1 = (i− 1, i) the constraint. Assume |F ∩Q1

n−1| > |F ∩Q0
n−1|. Depending on whether

w(d) = i or w(d) = i+ 1 holds, select as described previously a fault-free path of length
at most three that satisfies γi connecting d to a node d′ of Q0

n−1. Similarly, depending on
whether w(s) = i or w(s) = i + 1 holds, select as described previously a fault-free path
of length at most three that satisfies γi connecting s to a node s′ of Q0

n−1. If these two

paths s
γ
; s′ and d

γ
; d′ are not disjoint, then a path s

γ
; d is found. Otherwise, apply

the algorithm recursively in Q0
n−1 with γi = (i, i + 1) the constraint to find a fault-free

path s′
γ
; d′. See Figure 4.

Pseudo-code is given in Algorithm 2.

278



International Journal of Networking and Computing

Algorithm 2 HC-FT-CONS(n, i, s, d, F )

Input: A Qn, a bit constraint γi = (i, i + 1), a source node s, a destination node d and a set of
faulty nodes F .

Output: A fault free path s
γ
; d in Qn satisfying γi.

1: if F = ∅ then
2: HC-SPR-CONS(n, i, s, d)
3: else if |F | = 1 then . Selection of the reduction bit δ.
4: δ = 1
5: else
6: {f1, f2, . . . , f|F |} := F ;
7: δ = MSB (f1 XOR f2)
8: end if
9: if s AND 2δ = d AND 2δ then . s and d are in the same subcube.

10: if s AND 2δ = 0 then
11: if |Q0

n−1 ∩ F | ≤ |Q1
n−1 ∩ F | then

12: HC-FT-CONS(n− 1, i, s, d, Q0
n−1 ∩ F )

13: else
14: Select fault-free paths s

γ
; s′ ∈ Q1

n−1 and d
γ
; d′ ∈ Q1

n−1 of lengths at most three;

15: if (s
γ
; s′) ∩ (d

γ
; d′) = ∅ then

16: HC-FT-CONS(n− 1, i− 1, s′, d′, Q1
n−1 ∩ F )

17: else
18: Select s

γ
; u

γ
; d with u ∈ (s

γ
; s′) ∪ (d

γ
; d′)

19: end if
20: end if
21: else
22: if |Q1

n−1 ∩ F | ≤ |Q0
n−1 ∩ F | then

23: HC-FT-CONS(n− 1, i− 1, s, d, Q1
n−1 ∩ F )

24: else
25: Select fault-free paths s

γ
; s′ ∈ Q0

n−1 and d
γ
; d′ ∈ Q0

n−1 of lengths at most three;

26: if (s
γ
; s′) ∩ (d

γ
; d′) = ∅ then

27: HC-FT-CONS(n− 1, i, s′, d′, Q0
n−1 ∩ F )

28: else
29: Select s

γ
; u

γ
; d with u ∈ (s

γ
; s′) ∪ (d

γ
; d′)

30: end if
31: end if
32: end if
33: else . s and d are in distinct subcubes.
34: if s AND 2δ = 0 then
35: if |Q0

n−1 ∩ F | ≤ |Q1
n−1 ∩ F | then

36: Select a fault-free path d
γ
; d′ ∈ Q0

n−1 of length at most three;
37: HC-FT-CONS(n− 1, i, s, d′, Q0

n−1 ∩ F )
38: else
39: Reverse HC-FT-CONS(n, i, d, s, F )
40: end if
41: else
42: if |Q0

n−1 ∩ F | ≥ |Q1
n−1 ∩ F | then

43: Select a path d
γ
; d′ ∈ Q1

n−1;
44: HC-FT-CONS(n− 1, i− 1, s, d′, Q1

n−1 ∩ F )
45: else
46: Reverse HC-FT-CONS(n, i, d, s, F )
47: end if
48: end if
49: end if

279



Hypercube Fault Tolerant Routing with Bit Constraint

Q0
3 Q1

3

s : 0101

0111

d : 0011

1101 ∈ F

s′, d′ : 0110

Figure 4: Illustration of Step 2, Case s, d ∈ Q1
n−1. In a Q4 with reduction bit δ = 0 and constraint

γ2 = (2, 3), s, d are connected to the nodes s′, d′ ∈ Q0
3, respectively. The paths s

γ
; s′ and d

γ
; d′

are not disjoint, and thus a path s
γ
; d is found in Q1

3.

4.2 Routing example

We give in this section an example of the execution trace of the algorithm proposed in Section
4.1. In a Q5, given a source node s : 01010, a destination node d : 11100, a set of faulty nodes
F = {11000, 01011} and a bit constraint γ2 = (2, 3), an execution trace of the algorithm of Section
4.1 is given in Table 2. As a result, the fault-free path selected: s : 01010 → 01110 → 00110 →
00111→ 00101→ 01101→ 01100→ d : 11100 satisfying the constraint γ2 is selected. An illustration
is given in Figure 5.

Table 2: Fault tolerant routing example in a Q5 with γ2 = (2, 3) bit constraint.

n 2δ s d F ∈ Q0
n−1 ∈ Q1

n−1

5 16 01010 11100 {f1 : 11000,
f2 : 01011}

s, f2 d, f1

selected: d : 11100→ d′ : 01100

induction on Q0
4

4 8 01010 01100 {f2 : 01011} - s, d, f2

selected: s : 01010→ 01110→ s′ : 00110

selected: d : 01100→ 01101→ d′ : 00101

induction on Q0
3

3 - 00110 00101 ∅ - -

selected: s : 00110→ 00111→ d : 00101

(shortest path routing)

4.3 Correctness and complexities

In this section, we formally show the correctness of the algorithm described in Section 4.1, and we
establish its complexities: maximum path length and worst-case time complexity.

Lemma 3. The algorithm of Section 4.1 is correct and always terminates.

Proof. If |F | ≥ 2, we need to select a bit position δ (0 ≤ δ ≤ n − 1) such that Q0
n−1 and Q1

n−1
each include at least one fault. Such δ can be found simply by computing the exclusive-or bitwise
operation of two faulty nodes, and then taking the position of the MSB of the result.

280



International Journal of Networking and Computing

Q0
4

s : 01010

d′ : 01100

f2 : 01011

Q1
4

f1 : 11000

d : 11100

δ = 4

Q0
3

s′ : 00110

d′′ : 00101

Q1
3

s : 01010

01110

f2 : 01011

d′ : 01100

01101

δ = 3

Q3

s′ : 00110

00111

d′′ : 00101

shortest path routing

Figure 5: Complete fault tolerant routing example from s : 01010 to d : 11100 in a Q5 with γ2 = (2, 3)
bit constraint and f1 : 11000, f2 : 01011 faults.

We now show the existence of at least one fault-free path of length at most three satisfying
γi. Assume s, d are in distinct subcubes, say s ∈ Qn−1(s) and d ∈ Qn−1(d). Assume further that
|F ∩ Qn−1(d)| ≥ |F ∩ Qn−1(s)|. If |F ∩ Qn−1(d)| < |F ∩ Qn−1(s)|, the same discussion holds by
exchanging the roles of s and d.

Assume d ∈ Q1
n−1 and w(d) = i. In Q1

n−1, d has n− 1 neighbours, out of which n− i satisfy γi.
Because the corresponding n − i paths of lengths two of Πδ

d, say d → d′′j → d′j , are disjoint except
for d, and because d non-faulty, one fault can be included in at most one of these n − i candidate
paths. Since w(d) = i and d ∈ Q1

n−1, we have w(d′′j ) = i+ 1 and w(d′j) = i, thus these n− i paths of

lengths two of Πδ
d all satisfy γi. Note that for the same reason, the unique path of length one of Πδ

d

is not a candidate as the unique neighbour of d in Q0
n−1 does not satisfy γi. Assume n− i > i+ 1.

Then |F | ≤ i ≤ n− i− 1, and there always remain at least (n− i)− |F | ≥ (n− i)− (n− i− 1) = 1
fault-free candidate paths connecting d to Q0

n−1. Assume n− i ≤ i+ 1. Then |F | ≤ n− i− 1, and
there always remain at least (n − i) − |F | ≥ (n − i) − (n − i − 1) = 1 fault-free candidate paths
connecting d to Q0

n−1.

Assume d ∈ Q1
n−1 and w(d) = i + 1. In Q1

n−1, the node d has n − 1 neighbours, out of which i

satisfy γi. Consider the corresponding i paths of lengths two of Πδ
d, say d → d′′j → d̃j (1 ≤ j ≤ i),

that is w(d′′j ) = i and w(d̃j) = i− 1. Since n− i ≥ 2, there always exists at least one bit position α
such that the α-th bit of d is set to 0. Then, since the i paths considered are mutually disjoint except
for d, the paths of lengths three obtained bit flipping the same α-th bit of d′′j , say d→ d′′j → d′′′j → d′j ,
remain mutually disjoint except for d. Since the α-th bit of d is set to 0 and w(d′′j ) = i, we have

w(d′′′j ) = i + 1 and d′′′j 6= d. Also, because the paths of Πδ
d are mutually disjoint except for d and

because d′′′j 6= d, these paths of lengths three are disjoint (except for d) with the unique path of

length one of Πδ
d, say d→ d′0. So, because d non-faulty, one fault can be included in at most one of

these i+ 1 candidate paths. Since d ∈ Q1
n−1 and w(d) = i+ 1, w(d′0) = i. Also, since w(d′′′j ) = i+ 1,

w(d′j) = i. Thus these i + 1 candidate paths all satisfy γi. Assume n − i > i + 1. Then |F | ≤ i,

and there always remain at least (i+ 1)− |F | ≥ 1 fault-free candidate paths connecting d to Q0
n−1.

Assume n− i ≤ i+ 1. Then |F | ≤ n− i− 1 ≤ i, and there always remain at least (i+ 1)− |F | ≥ 1
fault-free candidate paths connecting d to Q0

n−1.

Assume d ∈ Q0
n−1 and w(d) = i+ 1. In Q0

n−1, d has n− 1 neighbours, out of which i+ 1 satisfy
γi. Because the corresponding i+ 1 paths of lengths two of Πδ

d, say d→ d′′j → d′j , are disjoint except
for d, and because d non-faulty, one fault can be included in at most one of these i + 1 candidate
paths. Since w(d) = i + 1 and d ∈ Q0

n−1, we have w(d′′j ) = i and w(d′j) = i + 1, thus these i + 1

281



Hypercube Fault Tolerant Routing with Bit Constraint

paths of lengths two of Πδ
d all satisfy γi. Note that for the same reason, the unique path of length

one of Πδ
d is not a candidate as the unique neighbour of d in Q1

n−1 does not satisfy γi. By using the
same arguments as in the case d ∈ Q1

n−1 and w(d) = i+ 1, we can deduce that there always remain
at least one fault-free candidate path connecting d to Q1

n−1.
Assume d ∈ Q0

n−1 and w(d) = i. In Q0
n−1, the node d has n−1 neighbours, out of which (n−1)−i

satisfy γi. Consider the corresponding (n − 1) − i paths of lengths two of Πδ
d, say d → d′′j → d̃j

(1 ≤ j ≤ i), that is w(d′′j ) = i + 1 and w(d′j) = i + 2. Since i ≥ 1, there always exists at least one
bit position α such that the α-th bit of d is set to 1. Then, since the (n − 1) − i paths considered
are mutually disjoint except for d, the paths of lengths three obtained bit flipping the same α-th
bit of d′′j , say d → d′′j → d′′′j → d′j , remain mutually disjoint except for d. Since the α-th bit of d

is set to 1 and w(d′′j ) = i + 1, we have w(d′′′j ) = i and d′′′j 6= d. Also, because the paths of Πδ
d are

mutually disjoint except for d and because d′′′j 6= d, these paths of lengths three are disjoint (except

for d) with the unique path of length one of Πδ
d, say d→ d′0. So, because d non-faulty, one fault can

be included in at most one of these (n − 1) − i + 1 = n − i candidate paths. Since d ∈ Q0
n−1 and

w(d) = i, w(d′0) = i+ 1. Also, since w(d′′′j ) = i, w(d′j) = i+ 1. Thus these n− i candidate paths all

satisfy γi. By using the same arguments as in the case d ∈ Q1
n−1 and w(d) = i, we can deduce that

there always remain at least one fault-free candidate path connecting d to Q1
n−1.

Now assume that s and d are included in the same subcube, say without loss of generality
s, d ∈ Q0

n−1. The same discussion holds for s, d ∈ Q1
n−1. If |F ∩ Q0

n−1| ≤ |F ∩ Q1
n−1|, no path is

selected. So assume |F ∩Q0
n−1| > |F ∩Q1

n−1|. We have shown previously that there exists at least
one fault-free path, say ρd, of length at most three satisfying γi connecting d to a node of Q1

n−1, and
thus similarly a fault-free path, say ρs, of length at most three satisfying γi connecting s to a node

of Q1
n−1. If ρs and ρd are not disjoint, say they both include the node u ∈ Q0

n−1 with s
γ
; u

γ
; s′

and d
γ
; u

γ
; d′, then discard the two sub-paths u

γ
; s′ and u

γ
; d′ so that the path s

γ
; u

γ
; d is

selected; the algorithm is terminated.
Now we show that the problem can be solved recursively in one of the two subcubes Q0

n−1 and
Q1
n−1. In other words, we show that at each recursive call, the number of faulty nodes in Qn is at

most min(n− i, i+ 1)− 1. Because the problem is solved recursively inside the subcube containing
the least number of faulty nodes, the number f of faulty nodes inside the subcube for induction
satisfies f ≤ b|F |/2c.

If the problem is solved recursively in Q1
n−1, the constraint becomes γi−1 = (i − 1, i) and thus

at most min((n − 1) − (i − 1), (i − 1) + 1) − 1 = min(n − i, i) − 1 faulty nodes can be tolerated in
Q1
n−1. Assume n − i > i + 1. Then in Qn, |F | ≤ i, and at most min(n − i, i) − 1 ≤ i − 1 faulty

nodes are tolerated in Q1
n−1. Thus, since in Q1

n−1 there are at most b|F |/2c faulty nodes (= f),
we have f ≤ bi/2c ≤ i − 1 as i ≥ 1, and the problem can be solved recursively in Q1

n−1. Assume
n− i ≤ i + 1. Then in Qn, |F | ≤ n− i− 1, and at most min(n− i, i)− 1 ≤ n− i− 1 faulty nodes
are tolerated in Q1

n−1. Thus, since in Q1
n−1 there are at most b|F |/2c faulty nodes (= f), we have

f ≤ b(n − i − 1)/2c ≤ n − i − 1 as i ≥ 1 and n > i, and the problem can be solved recursively in
Q1
n−1.

If the problem is solved recursively in Q0
n−1, the constraint stays γi = (i, i+ 1) and thus at most

min((n − 1) − i, i + 1) − 1 faulty nodes can be tolerated in Q0
n−1. Assume n − i > i + 1. Then in

Qn, |F | ≤ i, and at most min(n − i − 1, i + 1) − 1 ≤ i faulty nodes are tolerated in Q0
n−1. Thus,

since in Q0
n−1 there are at most b|F |/2c faulty nodes (= f), we have f ≤ bi/2c ≤ i as i ≥ 1, and the

problem can be solved recursively in Q0
n−1. Assume n− i ≤ i+ 1. Then in Qn, |F | ≤ n− i− 1, and

at most min(n− i− 1, i+ 1)− 1 ≤ n− i− 2 faulty nodes are tolerated in Q0
n−1. Thus, since in Q0

n−1
there are at most b|F |/2c faulty nodes (= f), we have f ≤ b(n− i− 1)/2c ≤ n− i− 2 as i ≥ 1 and
n > i, and the problem can be solved recursively in Q0

n−1.

Lemma 4. The algorithm of Section 4.1 selects a fault-free path s
γ
; d of length at most n +

5dlog |F |e+ 5 in O(n log |F |) time.

Proof. The algorithm is applied recursively in the subcube containing the least number of faulty
nodes, until obtaining a fault-free subcube. Hence, at most r ≤ 1 + dlog |F |e recursive calls are
made. Now, at each step of the reduction, at most three edges are selected for the fault-free path

282



International Journal of Networking and Computing

connecting s to the opposite subcube, and similarly for d. Once a fault-free subcube is reached, that
is after n− r reductions, the shortest path routing algorithm of Section 3.1 is applied in Qn−r, thus
selecting a path of length at most n − r. Therefore, in total, a fault-free path of length at most
6r+ (n− r) = n+ 5dlog |F |e+ 5 is selected. Note that if s and d in the same, most faulty, subcube,
we could directly apply recursion on that subcube (proof to be slightly updated), and thus have at
most three edges selected at each recursion step, at most |F | recursive calls, therefore resulting in a
maximum path length of 3|F |+ (n− |F |) = n+ 2|F |.

If Qn is fault-free, the shortest path routing algorithm of Section 3.1 is applied, thus requiring
O(n) time. Otherwise, in Step 1, a bit position δ can be obtained with a single XOR operation and
MSB detection, thus being constant time. In Step 2, selection of a fault-free path connecting s and
d to the opposite subcube requires O(n) time as the n paths of Πδ

s and Πδ
d, possibly extended by one

edge, may be iterated; including the 1-edge possible extension, these paths are of lengths at most
three and node comparison is constant time. Finally, the algorithm is applied recursively on either
Q0
n−1 or Q1

n−1, with at most r ≤ 1 + dlog |F |e recursive calls, thus requiring in total O(n log |F |)
time.

We can summarise the previous discussion in the following theorem.

Theorem 2. In a Qn, given two distinct non-faulty nodes s and d, a set F of at most min(n −
i, i + 1) − 1 faulty nodes, and a bit constraint γi = (i, i + 1), we can select a fault-free path s

γ
; d

satisfying γi of length at most n+ 5dlog |F |e+ 5 in O(n log |F |) time.

Proof. This can be directly deduced from Lemmas 3 and 4.

5 Empirical evaluation

In this section, we conduct several experiments in order to make an empirical evaluation of the pro-
posed algorithm (Section 4), and thus inspect its practical behaviour. To realise these experiments,
the proposed algorithm has been implemented using the Scheme functional programming language
[24]. We have then run the program to solve 10,000 random instances of the fault tolerant node-to-
node routing problem with bit constraint γi = (i, i+ 1) inside an n-dimensional hypercube for each
value of n with i = 2 and i+ 2 = 4 ≤ n ≤ 16. In total, we have thus solved 13× 10, 000 = 130, 000
instances of the considered routing problem. First, we conduct such an experiment to measure the
average execution time as well as the average and maximum maximal path length. Then, in order to
further refine our practical assessment of the proposed algorithm, we conduct a second experiment
regarding paths lengths, this time discussing average distances in a hypercube.

5.1 Average execution time and maximum path length

In these experiment, the source node, destination node and faulty nodes were all randomly selected
from the set of nodes satisfying the bit constraint γi. The source node and the destination node
are non-faulty and not necessarily distinct. Also, the number of faulty nodes was always maximised
(i.e. min(n − i, i + 1) − 1 ≤ 2 faulty nodes). Even though the number of faulty nodes remains low
since it depends on the value of i used to define the bit constraint, it is interesting to observe the
variations of the paths lengths and how these lengths compare to the theoretical estimations.

The first experimentation consisted in the measurement of the average execution time of the pro-
posed algorithm in the conditions described above, and for each value of n the hypercube dimension.
In practice, for each n, we have calculated the average execution time to solve one instance of the
routing problem. The results are given in Figure 6, and we also give on this figure for reference the
estimated theoretical worst-case time complexity of the algorithm as established in Section 4.3.

We notice a few data bumps which can be easily explained: measured times are very small,
of order 0.01ms, and thus time measurement is subject to such small bumps for instance due to
the computer core activity. The main observation regarding execution time is that the estimation
for the theoretical worst-case time complexity of the proposed algorithm has not been significantly
overestimated.

283



Hypercube Fault Tolerant Routing with Bit Constraint

 0.01

 4  5  6  7  8  9  10  11  12  13  14  15  16

0.003 * n * log2(min(n-i, n+1) - 1)
average execution time

Execution time (ms)

n

Figure 6: Average execution time for each value of n (i = 2 and 4 ≤ n ≤ 16).

 0

 5

 10

 15

 20

 25

 30

 4  5  6  7  8  9  10  11  12  13  14  15  16

theoretical maximum path length
maximum path length

average maximum path length

Path length

n

Figure 7: Maximum path length and average maximum path length with standard deviation for
each value of n (i = 2 and 4 ≤ n ≤ 16).

The second experiment consisted in the measurement of the length of the generated path for
each solution of the problem instances. We have then deduced from these data the maximum length
of a generated path for each value of n. In addition, we measured the average maximum length (and
deduced the standard deviation) obtained for each value of n. In practice, for each value of n, we
stored for each of the 10,000 problem instances the length of the generated path. Then, for each
value of n, we calculated from these data the maximum and average values of these path lengths.
The results obtained are given in Figure 7, and we also give on this figure for reference the estimated
theoretical worst-case maximum path length of the algorithm as established in Section 4.3.

In practice, one can see that the average performance of the proposed algorithm is significantly
better than the theoretical worst-case estimations; paths are effectively shorter. In addition, one can
observe that maximum length of a generated path is stabilising for dimensions beyond 6. One can
think of two reasons for this behaviour, both strongly related to the constraint γi. First, because
the source and destination nodes both satisfy γi, their maximum Hamming distance is limited to
i + (i + 1), that is 5 in our experiment. Also, the value of i induces a rather low number of faults,
and as the dimension of the hypercube used to perform routings increases, the probability that a
path has to make a detour to avoid a faulty node is getting lower given that the number of faulty
nodes remains constant in our experiment for n ≥ 5 due to the experimental parameters.

284



International Journal of Networking and Computing

5.2 Comparison with average distances in a hypercube

So as to better assess the average performance of the proposed routing algorithm, we shall here
conduct additional experimentation regarding the lengths of generated paths. We start by discussing
the average length of a shortest path in a hypercube between any two nodes, not necessarily distinct.
To this aim, we calculate the length of a shortest path in average, ignoring the presence of faulty
nodes. In a hypercube Qn, for a source node s, there are exactly C1

n = n nodes distant from 1 edge
to s, actually these nodes are the neighbours of s, C2

n nodes distant from 2 edges to s, and in general
Ckn nodes distant from k edges to s, with 0 ≤ k ≤ n. In order to establish the average distance from
s to any node of a Qn, we weight each number of nodes at distance k to s by the distance itself,
that is k. Hence, in total, the sum of the distances from a node s to every other nodes of a Qn is
equal to 0C0

n + 1C1
n + 2C2

n + . . .+ nCnn . This total value is divided by the number of nodes, that is
2n, and we obtain λ1 the average distance (i.e. the average length of a shortest path) between any
two nodes:

λ1 =
1

2n

n∑
i=0

i× Cin

We show in appendix with Theorem 3 that this average distance in a hypercube Qn can be
simply expressed as:

λ1 =
n

2

In order to assess even more accurately the average performance of the proposed algorithm, let
us discuss the average length of a shortest path that satisfies a bit constraint γi = (i, i + 1) (i.e.
average Hamming distance). For a node u = 1 . . . 10 . . . 0 with w(u) = i, first consider a node

v = v1v2 . . . vivi+1 . . . vn where
∑n
k=i+1 vk = j and

∑i
k=1 vk = i − j. Then w(v) = i and the

Hamming distance between u and v is 2j. There are
∑i
j=0 C

i−j
i ·Cjn−i = Cin such nodes v. Next, let

us consider a node x = x1x2 . . . xixi+1 . . . xn where
∑n
k=i+1 xk = j + 1 and

∑i
k=1 xk = i− j. Then

w(x) = i+1 and the Hamming distance between u and x is 2j+1. There are
∑i
j=0 C

i−j
i ·Cj+1

n−i = Ci+1
n

such nodes x. Now, we can calculate λ2 the average Hamming distance between u and v or x as
follows.

λ2 =

 i∑
j=0

Ci−ji · Cjn−i · 2j +

i∑
j=0

Ci−ji · Cj+1
n−i · (2j + 1)

/(
Cin + Ci+1

n

)

=

 i∑
j=0

Ci−ji · 2j ·
(
Cjn−i + Cj+1

n−i

)
+

i∑
j=0

Ci−ji · Cj+1
n−i

/(
Cin + Ci+1

n

)

=

 i∑
j=0

Cji · 2j ·
(
Cjn−i + Cj+1

n−i

)
+ Ci+1

n

/Ci+1
n+1

=

2i

i∑
j=0

Cj−1i−1 · C
j+1
n−i+1 + Ci+1

n

/Ci+1
n+1

=
(
2i · Ci+1

n + Ci+1
n

)
/Ci+1

n+1

=
(2i+ 1)(n− i)

n+ 1

A similar discussion can be applied to the case w(u) = i+ 1 and w(v) ∈ {i, i+ 1}, and we obtain
in this case the following average distance.

λ3 =
(2(n− i)− 1)(i+ 1)

n+ 1

285



Hypercube Fault Tolerant Routing with Bit Constraint

 0

 2

 4

 6

 8

 10

 12

 14

 4  5  6  7  8  9  10  11  12  13  14  15  16

average distance λ1
average distance λ2

maximum path length
average maximum path length

Path length

n

Figure 8: Maximum path length and average maximum path length with standard deviation for
each value of n (i = 2 and 4 ≤ n ≤ 16) when w(s) = i. The average distances λ1 and λ2 in a Qn
are also represented.

We can thus estimate these average distances λ1, λ2 and λ3 for the values of n used in this
experiment. Notably, the average distances λ2, λ3 give a lower bound on the path length as obtained
by the proposed algorithm. So as to fairly compare the empirical results with these bounds λ1, λ2
and λ3, we conduct a similar experiment as in Section 5.1: we solve 10,000 random instances of the
fault tolerant node-to-node routing problem with bit constraint γi = (i, i + 1) inside a Qn for each
n with i = 2 and i + 2 = 4 ≤ n ≤ 16. Yet here, we conduct two different measurements, one with
the source node randomly selected from the set of nodes whose weights are equal to i, and another
measurement with the source node randomly selected from the set of nodes whose weights are equal
to i+ 1. We recall that the source node and the destination node are non-faulty and not necessarily
distinct, and that the number of faulty nodes was always maximised. The results in the case when
w(s) = i are illustrated in Figure 8, and the results in the case when w(s) = i+ 1 are illustrated in
Figure 9.

One can observe that the average maximum path length obtained when running the proposed
algorithm is close to the average distance as formally discussed previously (λ2, λ3). Let us recall that
faulty nodes were not considered in our calculation of the average distance between any two nodes
in a hypercube. Taking into consideration faulty nodes may raise the average distance values even
closer to the obtain average maximum path lengths for small values of n. As explained previously,
the constraint γi is inducing an upper bound on the Hamming distance between the source and
destination nodes, and thus, as the hypercube dimension n increases, the average maximum path
length is getting more distant from the average distance λ1. So, by considering small values of n,
the small gap between the average distance λ1 and the average maximum path length is yet another
strong indication of the good performance of our algorithm.

6 Conclusion

Enforcing a bit constraint when routing in a hypercube has several interesting applications. In this
paper, we have first described a shortest path routing algorithm in a hypercube Qn that selects a

path s
γ
; d of length H(s, d) and satisfies a bit constraint γi = (i, i + 1). We have formally shown

the correctness of this algorithm and that it is time optimal O(H(s, d)). Next, we have proposed

a fault tolerant node-to-node routing algorithm in a Qn that selects a fault-free path s
γ
; d of

length at most n+ 5dlog |F |e+ 5 in O(n log |F |) time. Given a set of faulty nodes F , the maximum
number of faults tolerated is |F | ≤ min(n− i, i+1)−1. We have formally proved the correctness and
complexities of this algorithm. Lastly, we have conducted several experiments in order to inspect the
practical behaviour of the proposed algorithm. We have shown through these experiments that in
practice, the algorithm is performing very well compared to the theoretical worst-case estimations.

286



International Journal of Networking and Computing

 0

 2

 4

 6

 8

 10

 12

 14

 4  5  6  7  8  9  10  11  12  13  14  15  16

average distance λ1
average distance λ3

maximum path length
average maximum path length

Path length

n

Figure 9: Maximum path length and average maximum path length with standard deviation for
each value of n (i = 2 and 4 ≤ n ≤ 16) when w(s) = i+ 1. The average distances λ1 and λ3 in a Qn
are also represented.

As for future works, it would be interesting to consider faulty clusters rather than just faulty nodes,
starting with clusters of small diameters.

Acknowledgements

The authors sincerely thank the reviewers for their insightful comments and suggestions which
significantly helped improving this paper. This study was partly supported by a Grant-in-Aid for
Scientific Research (C) of the Japan Society for the Promotion of Science under Grant No. 25330079.

References

[1] Sheldon B. Akers and Balakrishnan Krishnamurthy, “A group-theoretic model for symmetric
interconnection networks”, IEEE Transactions on Computers, vol. C-38, no. 4, pp. 555–566,
1989.

[2] Charles L. Seitz, “The cosmic cube”, Communications of the ACM, vol. 28, no. 1, pp. 22–33,
1985.

[3] TOP500. List. http://top500.org/list/2014/06/, June 2014. Last accessed July 2014.

[4] Qutaibah Marwan Malluhi and Magdy A. Bayoumi, “The hierarchical hypercube: a new in-
terconnection topology for massively parallel systems”, IEEE Transactions on Parallel and
Distributed Systems, vol. 5, no. 1, pp. 17–30, 1994.

[5] Antoine Bossard and Keiichi Kaneko, “The set-to-set disjoint-path problem in perfect hierar-
chical hypercubes”, The Computer Journal, vol. 55, no. 6, pp. 769–775, 2012.

[6] Antoine Bossard and Keiichi Kaneko, “k-pairwise disjoint paths routing in perfect hierarchical
hypercubes”, The Journal of Supercomputing, vol. 67, no. 2, pp. 485–495, 2014.

[7] Shuming Zhou, Limei Lin and Jun-Ming Xu, “Conditional fault diagnosis of hierarchical hy-
percubes”, International Journal of Computer Mathematics, vol. 89, no. 16, pp. 2152–2164,
2012.

[8] Kanad Ghose and Kiran Raghavendra Desai, “The HCN: a versatile interconnection network
based on cubes”, In Proceedings of the 1989 ACM/IEEE Conference on Supercomputing, pp.
426–435, Reno, NV, USA, November 12–17, 1989.

287



Hypercube Fault Tolerant Routing with Bit Constraint

[9] Antoine Bossard and Keiichi Kaneko, “Node-to-set disjoint-path routing in hierarchical cubic
networks”, The Computer Journal, vol. 55, no. 12, pp. 1440–1446, 2012.

[10] Antoine Bossard and Keiichi Kaneko, “Set-to-set disjoint paths routing in hierarchical cubic
networks”, The Computer Journal, vol. 57, no. 2, pp. 332–337, 2014.

[11] Yamin Li, Shietung Peng, and Wanming Chu, “Metacube - a versatile family of interconnection
networks for extremely large-scale supercomputers”, The Journal of Supercomputing, vol. 53,
no. 2, pp. 329–351, 2010.

[12] Antoine Bossard, Keiichi Kaneko, and Shietung Peng, “Node-to-set disjoint paths routing in a
metacube”, International Journal of High Performance Computing and Networking, (in press),
2014.

[13] Yamin Li, Shietung Peng, and Wanming Chu, “Efficient collective communications in dual-
cube”, The Journal of Supercomputing, vol. 28, no. 1, pp. 71–90, 2004.

[14] Yuan-Kang Shih, Hui-Chun Chuang, Shin-Shin Kao, and Jimmy J. Tan, “Mutually independent
Hamiltonian cycles in dual-cubes”, The Journal of Supercomputing, vol. 54, no. 2, pp. 239–251,
2010.

[15] Qian-Ping Gu and Shietung Peng, “An efficient algorithm for the k-pairwise disjoint paths
problem in hypercubes”, Journal Parallel and Distributed Computing, vol. 60, no. 6, pp. 764–
774, 2000.

[16] Qian-Ping Gu and Shietung Peng, “Node-to-set and set-to-set cluster fault tolerant routing in
hypercubes”, Parallel Computing, vol. 24, pp. 1245–1261, 1998.

[17] Jianer Chen, Iyad A. Kanj, and Guojun Wang, “Hypercube network fault tolerance: a proba-
bilistic approach”, Journal of Interconnection Networks, vol. 6, no. 1, pp. 17–34, 2005.

[18] Ozgur Sinanoglu, Mehmet Hakan Karaata, and Bader AlBdaiwi, “An inherently stabilizing
algorithm for node-to-node routing over all shortest node-disjoint paths in hypercube networks”,
IEEE Transactions on Computers, vol. 59, no. 7, pp. 995–999, 2010.

[19] Cheng-Nan Lai, “Optimal construction of all shortest node-disjoint paths in hypercubes with
applications”, IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 6, pp. 1129–
1134, 2012.

[20] Hyeong-Ok Lee, Jong-Seok Kim, Eunseuk Oh, and Hyeong-Seok Lim, “Hyper-Star Graph: a
new interconnection network improving the network cost of the hypercube”, In Proceedings of
the First EurAsian Conference EurAsia ICT: Information and Communication Technology, pp.
858–865, Shiraz, Iran, October 29–31, 2002.

[21] Antoine Bossard, “A set-to-set disjoint paths routing algorithm in hyper-star graphs”, ISCA
International Journal of Computers and Their Applications, vol. 21, no. 1, pp. 76–82, 2014.

[22] Youcef Saad and Martin H. Schultz, “Topological properties of hypercubes”, IEEE Transactions
on Computers, vol. 37, no. 7, pp. 867–872, 1988.

[23] Karl Menger, “Zur allgemeinen Kurventheorie”, Fundamenta Mathematicae, vol. 10, pp. 96–
115, 1927.

[24] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krish-
namurthi, Paul Steckler, Matthias Felleisen, “DrScheme: a programming environment for
scheme”, Journal of Functional Programming, vol. 12, no. 2, pp. 159–182, 2002.

288



International Journal of Networking and Computing

A Appendix

In this appendix, we discuss the average distance between any two nodes in a hypercube, in other
words the average length of a shortest path.

Theorem 3. The average distance between any two nodes in a hypercube Qn is n/2.

Proof. A Qn consists of 2n nodes. For any one node s, there is C0
n = 1 node at distance 0 from

s, C1
n = n nodes at distance 1 from s, and so on, and in general there are Ckn nodes at distance

k (0 ≤ k ≤ n) from s. Hence, the sum of all the distances to each node of Qn from s is equal
to
∑n
i=0 iC

i
n. From the binomial theorem, we have (1 + x)n =

∑n
k=0 C

k
nx

k and we can deduce by
derivation that n(1 + x)n−1 =

∑n
k=0 kC

k
nx

k−1. By setting x = 1, we obtain n2n−1 =
∑n
k=0 kC

k
n,

with the right-hand side expression thus representing the sum of all the distances from node 0 to
each node of Qn. We divide the left-hand side by 2n to obtain the average distance n/2 between
any two nodes of a Qn.

289


