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Abstract

Although General Purpose computation on Graphics Processing Units (GPGPU) is widely
used for the high-performance computing, standard programming frameworks such as CUDA
and OpenCL are still difficult to use. They require low-level specifications and the hand-
optimization is a large burden. Therefore we are developing an easier framework named MESI-
CUDA. Based on a virtual shared memory model, MESI-CUDA hides low-level memory manage-
ment and data transfer from the user. The compiler generates low-level code and also optimizes
memory accesses applying conventional hand-optimizing techniques. However, creating GPU
threads is same as CUDA; the user specifies thread mapping, i.e. thread indexing and the
size of thread blocks run on each streaming multiprocessors (SM). The mapping largely affects
the execution performance and may obstruct automatic optimization of MESI-CUDA compiler.
Therefore, the user must find optimal specification considering physical parameters. In this
paper, we propose a new thread mapping scheme. We introduce new thread creation syntax
specifying hardware-independent logical mapping, which is converted into optimized physical
mapping at compile time. Making static analysis of array index expressions, we obtain groups
of threads accessing the same or neighboring array elements. Mapping such threads into the
same thread block and assigning consecutive thread indices, the physical mapping is determined
to maximize the effect of memory access optimization. As the result of evaluation, our scheme
could find optimal mapping strategies for five benchmark programs. Memory access transac-
tions were reduced to approximately 1/4 and 1.4–76 times speedup is achieved compared with
the worst mapping.

Keywords: GPGPU, CUDA, parallel programming, compiler, optimization

1 Introduction

General Purpose computation on Graphics Processing Unit (GPGPU) [1, 2] is widely used for the
high-performance computing. However, current de facto programming frameworks such as CUDA [3]
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and OpenCL [4] provide APIs for low-level specifications such as memory allocation and data trans-
fer. Although they enable the user to hand-optimize the program, deep knowledge of GPU archi-
tecture is required. Thus, GPGPU programming is complicated and achieving high-performance is
very difficult. Moreover, such optimization may not be performance-portable to the different GPU
models.

Therefore, we are developing a new programming framework named MESI-CUDA [5, 6, 7]. MESI-
CUDA is a CUDA variation which aims to make GPGPU programming easier and more portable,
but still achieving high-performance. Adopting simpler programming model, MESI-CUDA hides
low-level GPU features. The low-level code is not needed in the user’s program because such code
is automatically generated and also optimized by the compiler.

Current MESI-CUDA hides complicated GPU memory architecture under a virtual-shared mem-
ory model, eliminating low-level code for memory management and data transfer. The compiler
makes memory access optimizations such as using shared memories as explicit caches [7]. On the
other hand, creating and mapping GPU threads are same as CUDA; the user defines kernel functions
for GPU and invokes them as threads, explicitly mapping to physical resources. We regard explicit
multi-threading is necessary for practical high-performance computing on GPU, but physical map-
ping should be hidden because its hand-optimization is very difficult and not portable between GPU
models. Furthermore, thread mapping also affects the memory usage thus inappropriate mapping
may obstruct our automatic memory access optimizations.

In this paper, we propose a new creation scheme of GPU threads. We introduce new syntax of
thread creation specifying hardware-independent logical mapping. Such logical mapping is converted
to CUDA’s physical mapping at compile time. In our scheme, the user can create threads without
considering low-level and device-dependent parameters such as the number of GPU cores. Because
physical mapping is determined by the compiler, many automatic optimizations are possible. Based
on static analysis of array index expressions, the compiler determines thread mapping improving the
usage of physical resources and the effect of memory access optimization.

This paper is organized as follows: Section 2 gives an introduction of GPU, CUDA, MESI-CUDA
and CUDA optimization techniques. Section 3, 4 details our logical mapping and how to convert it
to optimized physical mapping. Section 5 shows the evaluation results and in Section 6 we discuss
the related works. In Section 7 and 8, we state our future works and the conclusion.

2 Background

2.1 GPU Architecture

GPU is a collection of streaming multiprocessors (SM), which have certain number of CUDA cores.
Although CUDA cores are simpler than typical CPU cores, a GPU has hundreds or thousands of
CUDA cores. Thus the potential performance of a GPU is much higher than a CPU.

Fig. 1 shows a typical architecture of a GPU card installed on a PC. Similarly as the CPU cores
share the main memory (called host memory in CUDA programming), all CUDA cores share a large
off-chip device memory. Furthermore, each SM has a small on-chip memory called shared memory,
which is shared by all CUDA cores in the SM.

NVIDIA GPU architecture has been evolved in each generations Tesla, Fermi [8], Kepler [9], and
the latest Maxwell [10], introducing new features and changing many hardware specifications such
as the numbers of SMs and CUDA cores. Different GPU models often have different specifications
even if they belong to the same generation.

2.2 CUDA

CUDA (Compute Unified Device Architecture) [3, 11, 12] is a GPGPU programming framework
provided by NVIDIA, using extended C/C++ or Fortran. Fig. 2 shows a matrix multiplication
program using CUDA. The additional code required for parallel programming in CUDA is shown
underlined.
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Figure 1: GPU Architecture

1 #define N 1024

2 #define BX 128

3 #define S (N*N*sizeof(int))

4 int ha[N][N], hb[N][N], hc[N][N];

5 __global__ void matmul(int a[][N], int b[][N], int c[][N]){

6 int k;

7 int row = blockDim.y*blockIdx.y+threadIdx.y;

8 int col = blockDim.x*blockIdx.x+threadIdx.x;

9 c[row][col] = 0;

10 for(k = 0 ; k < N ; k++){

11 c[row][col] += a[row][k] * b[k][col];

12 }

13 }

14 void init_array(int d[N][N]){. . .}
15 void output_array(int d[N][N]){. . .}
16 int main(int argc, char *argv[]){

17 int *da, *db, *dc;

18 dim3 dimGrid(N/BX, N);

19 cudaMalloc(&da, S);

20 cudaMalloc(&db, S);

21 cudaMalloc(&dc, S);

22 init_array(ha);

23 init_array(hb);

24 cudaMemcpy(da, (int*)ha, S, cudaMemcpyHostToDevice);

25 cudaMemcpy(db, (int*)hb, S, cudaMemcpyHostToDevice);

26 matmul<<<dimGrid, BX>>>((int(*)[N]))da, (int(*)[N]))db, (int(*)[N]))dc);

27 cudaMemcpy((int*)hc, dc, S, cudaMemcpyDeviceToHost);

28 output_array(hc);

29 cudaFree(da);

30 cudaFree(db);

31 cudaFree(dc);

32 }

Figure 2: CUDA Program of Matrix Multiplication

In CUDA, CPU and GPU are called host and device, respectively. Functions, declared with the
device or global qualifier, are called kernel functions and can be executed on the device

(Fig. 2 l. 5–13). The other functions (called host functions in this paper) are executed on the host
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Table 1: CUDA Built-in variables
gridDim.x, gridDim.y, gridDim.z grid size (number of blocks)
blockIdx.x, blockIdx.y, blockIdx.z block index (in the grid)
blockDim.x, blockDim.y, blockDim.z block size (number of threads)
threadIdx.x, threadIdx.y, threadIdx.z thread index (in the block)

(l. 14–32). To start computation on the GPU, any host function can invoke a global kernel
function specifying the number of threads (l. 26). Then, the created GPU threads execute the
kernel function. In this paper, we simply call such GPU threads as threads.

CUDA uses grids and blocks for controlling thread mapping to data and physical resources. A
block is a group of threads executed on the same SM, and a grid is a group of blocks of the same
size. On the invocation of a kernel function, execution configuration must be specified using an
expression of the form <<<Dg, Db>>>. Dg and Db are the sizes of the grid and blocks, respectively.
They should be values of integer or a built-in 3D vector type dim3. For example, Fig. 2 program
creates a grid of N/BX × N blocks and each block consists of BX threads (Fig. 2 l. 18, 26). BX is
used because the block size is limited (1024 at maximum for Kepler), and also may be tuned for the
performance.

Built-in variables shown in Table 1 are available to obtain grid/block sizes and block/thread
indices. Using them in the index expressions of arrays, each thread performs the same computation
on the different array element. In the kernel function matmul() of Fig. 2 program, row and col

are computed using block/thread indices so each thread computes different element of the array c

(l. 7–12).
The host/device memories are only accessible from CPU/GPU cores, respectively. For the data

sharing between CPU and GPU, memory allocations on both memories and data transfers are
required. In CUDA programming, the user must explicitly describe such low-level behaviors calling
API functions: memory allocation/deallocation calling cudaMalloc()/cudaFree() (l. 19–21, 29–
31), and data transfer calling cudaMemcpy() (l. 24–25, 27).

2.3 Hand-Optimization of CUDA program

Various hand-optimizations are possible in CUDA programming [12, 13, 14], considering architecture-
level features of the target GPU model. Because thousands of CUDA cores perform computation
using data on a single device memory, hiding the memory access latency is the most important
strategy.

2.3.1 Memory Access Optimization

A thread block is partitioned into groups of 32 threads called warps and a SM executes all threads
of a warp in a SIMD style. When the current warp is stalled on memory accesses, the execution is
switched to other active warps. The device memory accesses in a warp are coalesced if the requested
data are in the same L2 cache line of 128 bytes. Therefore, the access transactions are largely
reduced if the threads in a warp simultaneously access data of the same or neighboring memory
addresses [12].

Another optimization is to allocate frequently-used data in the shared memories on each SM.
Because their access latency is much smaller, they can be used as the explicit caches of the de-
vice memory. A local variable of a kernel function can be allocated on the shared memory using
shared qualifier. However, explicit copy from/to the device memory is needed in the function

because its lifetime is within the function. Such variables are shared among all threads in the block,
thus explicit synchronizations calling syncthreads() may be needed. Furthermore, the variables
caching on the shared memories must be carefully determined because each available capacity is only
48KB 1. Explicit caching of an array can also be used to convert non-coalesced accesses to coalesced

1Physical size of the shared memory is 64KB (96KB for the second generation Maxwell), but only 48KB is available
for each thread block.
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Figure 3: Thread Mapping for Matrix Multiplication

accesses; the threads in a block can cache the required segment of the array using coalesced accesses
and later access to the shared memory.

2.3.2 Thread Mapping Optimization

The grid/block sizes are not limited by the numbers of SMs and CUDA cores; scheduling threads to
the physical resources are managed by the hardware. However, physical mapping is not completely
hidden. The execution configuration and the usage of build-in thread/block indices largely affect
the performance.

The block size, determined by the execution configuration, should be an integral multiple of the
warp size 32. Although the number of warps per block is 32 (=1024/32) at maximum, it is better
to have many warps in a block so the SM can switch the current warp and hide the memory access
latency. The number of blocks also should be large enough to keep all SMs busy. If multiple blocks
are assigned to the same SM, some of the blocks may be executed concurrently to increase active
warps on the SM. The block size also affects the possibility of explicit caching because the cached
data size often depends on the number of threads in a block.

Mapping threads to data is determined by the user’s usage of build-in thread/block indices.
On the other hand, the threads in the same block are mapped to the same SM and the threads
of consecutive threadIdx.x are mapped to the same warp. Thus, the indices usage determines if
the coalesced accesses are possible. It also determines the access locality within a block and may
influence explicit caching.

To make the optimization difficult, the user must consider the trade-off between utilizing the
shared memories and assigning multiple warps/blocks to a SM. The larger block size increases active
warps but may obstruct explicit caching because the required data size will also increase. Using
shared memories suppresses concurrent execution of blocks because the total resources required by
all concurrent blocks on a SM cannot exceed the physical resources. For example, only one (two for
the latest Maxwell) block per SM is executed simultaneously if the usage of shared memory in the
block is more than 32KB.

Fig. 3 shows the thread-data mapping of Fig. 2 program. Shaded and thick framed regions are
the accessed elements in a block and in a thread of the block, respectively. In each thread, one
element of the array c is updated N times but it can be optimized to use a temporal scalar variable
and write back once. For the array a, all threads in a block access the same element for each loop
iteration, and the accessed elements are consecutive in the memory. Therefore, the access will be
coalesced and explicit caching is also available. On the other hand, each thread in a block accesses
exclusive range of the array b. Caching is difficult because N × BX elements are needed in a block.
Although the accesses in a block will be coalesced, the accesses are redundant because N blocks have
a thread accessing the same column of b and their accesses cannot be coalesced.

A hand-optimization technique using a square partitioning [11] is shown in Fig. 4. All threads in
the block accesses B rows/columns of a, b, respectively. On the loop iteration i, all threads access
the element of column/row i of a, b, respectively. Thus the code is optimized to repeat caching B×B
elements of a, b (dark regions in Fig. 4) and executing the iteration B times. The optimized code
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Figure 4: Optimized Thread Mapping for Matrix Multiplication

1 #define N 1024

2 #define B 16...
5 __global__ void matmul(int a[][N], int b[][N], int c[][N]){

6 int k,_ix1;

7 int row = blockDim.y*blockIdx.y+threadIdx.y;

8 int col = blockDim.x*blockIdx.x+threadIdx.x;

9 int cval = 0;

10 for ( ix1 = 0 ; ix1 < N ; ix1 += B){
11 __shared__ int as[B][B];

12 __shared__ int bs[B][B];

13 as[threadIdx.y][threadIdx.x] = a[row][threadIdx.x+ ix1];

14 bs[threadIdx.y][threadIdx.x] = b[threadIdx.y+ ix1][col];

15 syncthreads();

16 for (k = 0 ; k < B ; k++){

17 cval += as[threadIdx.y][k] * bs[k][threadIdx.x];

18 }

19 syncthreads();

20 }
21 c[row][col] = cval;

22 } ...
25 int main(int argc, char *argv[]){

26 int *da, *db, *dc;

27 dim3 dimGrid(N/B, N/B);

28 dim3 dimBlock(B, B);
...

36 matmul<<<dimGrid, DimBlock>>>((int(*)[N]))da, (int(*)[N]))db, (int(*)[N]))dc);
...

Figure 5: Optimized CUDA Program of Matrix Multiplication

is shown in Fig. 5. The additional/modified code for the parallelization and optimization is shown
underlined.

2.4 MESI-CUDA

CUDA programming API directly reflects the complex GPU architecture. Although such low-level
API enables hand-tuning considering hardware specifications, it is difficult and may not be efficient
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Figure 6: MESI-CUDA Programming Model

on other GPU models. Therefore we are developing an easier GPGPU programming framework
MESI-CUDA [5, 6, 7].

MESI-CUDA adopts a virtual shared memory model that all CPU/CUDA cores share a single
global memory (Fig. 6). Actually, only global variables defined with global qualifier are shared.
To avoid confusing with the CUDA variables defined with shared qualifier, we call our shared
variables as virtual shared variables or VS variables. The values of VS variables are made logically
consistent on each kernel invocation, thus explicit synchronization/mutual exclusion are not needed.

On the other hand, basic parallelization scheme is same as CUDA: writing host/kernel functions
for CPU/CUDA cores and invoking the latter from the former. We do not hide this explicit par-
allelization because the characteristics of CUDA cores are quite different from the CPU cores. For
example, CUDA cores can run fine-grained threads with small overhead, but branch divergent code
is inefficient. In high-performance computing using GPU, it would be impractical to write code
ignoring such differences.

Using MESI-CUDA, the matrix multiplication program in Fig. 2 can be simplified as shown in
Fig. 7. The additional code required for parallel programming in MESI-CUDA is shown underlined.
The arrays for 2D matrices can be defined as VS variables and can be accessed from both host/kernel
functions (Fig. 7 l. 3) 2. The user can concentrate on parallel algorithm without low-level API
functions for memory management and data transfer. However, MESI-CUDA is upper-compatible
to CUDA and hand-optimizing using CUDA API is possible if the compiler’s optimization is not
sufficient.

The MESI-CUDA compiler is implemented as a translator to CUDA code. The low-level code
such as memory management and data transfer is generated by the compiler. To achieve high-
performance without user’s hand-optimization, the compiler performs optimization based on static
analysis. For this purpose, we have developed automatic optimization schemes such as overlapping
thread execution/data transfer [5] and explicit cache using shared memories [7]. However, thread
mapping cannot be optimized because current MESI-CUDA adopts physical mapping like CUDA.
Moreover, user’s mapping may obstruct existing optimizations by the compiler.

For the Fig. 7 program, our compiler caches the array a. However, applying the optimization
shown in Fig. 5 is impossible because thread-data mapping is not modified.

3 Logical Grid of Threads

We propose a new logical thread mapping scheme for MESI-CUDA. It hides low-level GPU features
from the user, device-dependent optimization can be left to the compiler, and more flexible automatic
optimization is possible.

To keep the lower compatibility with CUDA, we introduce new execution configuration specified
using an expression of the form <[<D0, . . ., Dm−1>]>. The expression specifies a single thread grid

2If the input/output variables of multiplication is fixed to ga, gb, and gc, they can be directly accessed in kernel
functions and do not need to be passed as function arguments.
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1 #define N 1024

2 #define BX 128

3 __global__ int ga[N][N], gb[N][N], gc[N][N];

4 __global__ void matmul(int a[][N], int b[][N], int c[][N]){

5 int k;

6 int row = blockDim.y*blockIdx.y+threadIdx.y;

7 int col = blockDim.x*blockIdx.x+threadIdx.x;

8 c[row][col] = 0;

9 for(k = 0 ; k < N ; k++){

10 c[row][col] += a[row][k] * b[k][col];

11 }

12 }

13 void init_array(int d[N][N]){. . .}
14 void output_array(int d[N][N]){. . .}
15 int main(int argc, char *argv[]){

16 init_array(ga);

17 init_array(gb);

18 matmul<<<dimGrid, BX>>>((int(*)[N]))ga, (int(*)[N]))gb, (int(*)[N]))gc);

19 output_array(gc);

20 }

Figure 7: MESI-CUDA Matrix Multiplication

Table 2: Built-in Variables for Logical Mapping
lGrid.dim[i] (i = 0, . . . ,m− 1) grid size (number of threads)
lThread.Idx[i] (i = 0, . . . ,m− 1) thread index (in the grid)
lGridDim.x, lGridDim.y, lGridDim.z alias to lGrid.dim[i] and
lThreadIdx.x, lThreadIdx.y, lThreadIdx.z lThread.Idx[i] (i = 0, 1, 2)

...
6 int row = lThreadIdx.y;

7 int col = lThreadIdx.x;

8 c[row][col] = 0;

9 for(k = 0 ; k < N ; k++){

10 c[row][col] += a[row][k] * b[k][col];...
15 int main(int argc, char *argv[]){...
18 matmul<[<N, N>]> ((int(*)[N]))ga, (int(*)[N]))gb, (int(*)[N]))gc);

...

Figure 8: MESI-CUDA Matrix Multiplication using Logical Mapping

of arbitrary dimensions, which size is D0 × . . . ×Dm−1. In this paper, we call the configuration of
new form and the specified grid as logical execution configuration and logical grid, respectively. We
also introduce new built-in variables shown in Table 2.

The logical grid has no limitation on its dimension and size. They can be determined to naturally
map the application’s data structure. Thus the code will be independent from the physical resources.
For example, the execution configuration and data mapping (i.e. accessed row/column of arrays) of
Fig. 7 program are briefly specified as shown in Fig. 8.
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4 Conversion to Optimized Physical Mapping

4.1 Basic Strategy

We make static analysis of array index expressions to obtain groups of threads accessing the same
or neighboring elements. Here we define the following terminology:

• target variable

Suppose that a m-dimensional logical grid of size D = D0× . . .×Dm−1 is specified on invoking
a kernel function, and an access to a n-dimensional array occurs within k−nested loops in the
function. On analyzing each index expressions e0, . . . , en−1, we regard all built-in logical index
variables lThread.Idx[0], . . ., lThread.Idx[m-1], and all loop variables i0, . . ., ik−1, as the
target variables.

• normal form of index expression

the normal form of an index expression e, denoted as N(e), is in the form:

N(e) = CI
0 × lThread.Idx[0] + . . . + CI

m−1 × lThread.Idx[m− 1]

+ CL
0 × i0 + . . . + CL

k−1 × ik−1

+ Cc

The normal form must be a polynomial expression of first-degree terms of target variables.
CI

p , CL
q are the coefficients of each term and must be loop-invariant. Cc is the constant term.

We also denote the sizes of warp and L2 cache line as Sw, Sl, respectively. As mentioned in
Section 2.3.1, Sw = 32 and Sl = 128 for current GPU architectures.

We expect kernel functions satisfy the following assumptions:

1. All array index expressions can be transformed to the normal form.

2. All numbers of loop iterations are fixed and known at compile time.

Currently, we cannot handle non-linear index expressions. However, we expect most kernel
functions can be analyzed because irregular access patterns are inefficient and tend to be avoided in
GPU code. Omitting the expressions which does not satisfy the assumptions may cause non-optimal
mapping, but code generation is still possible.

Unfixed numbers of loop iterations also make our analysis difficult. For the simplicity, here we
assume all loop statements are in the following form:

for (i = es ; i op ee ; i += c){ . . . }

where es, ee, and c are constant expressions and op is one of the following compare operators: <,
<=, >, and >=. However, this assumption is practically too strict thus in Section 4.4.1 we discuss
relaxing the limitation.

We statically analyze index expressions of each array variable occurrence, and obtain the rela-
tionship between threads and array indices. We also make range analysis of the index expressions [7]
to obtain the accessed range in a thread for each array. Using the result, we make groups of threads
maximizing the chance to apply memory access optimizations. The basic strategies are as follows:

1. Threads tp, tq access the same array element if each corresponding index expression e0, . . . , en−1
has the same value. Assigning tp and tq in the same warp makes their access for the occurrence
coalesced.

2. If the values are the same for e0, . . . , en−2 and close to for en−1, assigning tp and tq in the
same warp can expect (partially) coalesced access because they access neighboring addresses.
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Testing the strategies for every thread pair consumes large computation time. Additionally,
generating efficient code is difficult if logical/physical threads have nonlinear relationship. Therefore,
we partition the m-dimensional logical grid to s-dimensional tiles and assign each tile to a CUDA
thread block. To select preferred s dimensions from m logical dimensions, dimensions are given
partitioning-priority value, which are denoted as P0, . . . , Pm−1. We also introduce notations P ′r,
P ′′r (r = 0, . . . ,m − 1), which represents the priority values derived from the basic strategy 1 and
2, respectively. We only examine threads which are adjacent on one of the m-dimensions and add
priority values when they satisfy the strategy conditions.

Estimating advantage/disadvantage of explicit caching is very difficult because it reduces the
memory access cost but suppresses concurrent blocks. Therefore, currently we only use coalescing
detection for selecting s dimensions and explicit caching is considered on determining the block size.

4.2 Static Analysis

4.2.1 Building Normal Forms of Index Expressions

For each index expression in the kernel function, we transform it to the normal form. For non-target
variables in the expression, we find the assignment whose value is valid at the occurrence of index
expression. Then we replace the variable with the right hand side expression of the assignment.
For example, the normal forms of index expressions for the occurrence of a in Fig. 8 l. 10 are
lThreadIdx.y and k.

4.2.2 Detecting Access to Same Elements

To detect multiple accesses to the same element, index expressions are examined for each array
variable occurrence. If all e0, . . ., en−1 do not have the term of lThread.Idx[r], all thread with the
same logical indices except dimension r access the same element and can be coalesced. For each such
occurrence, we add L× Sw to P ′r, where L is the product of loop iteration numbers L0, . . . , Lk−1.

For example, all threads with the same lThreadIdx.y value access the same element on the
occurrence of a in Fig. 8 l. 10 because lThreadIdx.x does not appear in the index expressions.
Thus N× Sw is added to P ′0. Similarly, the same value is added to P ′1 examining the b occurrence.

4.2.3 Detecting Access to Neighboring Elements

Even if all index terms exist, some priority value should be given if the threads adjacent on logical grid
accesses the neighboring element on the memory. For this purpose, the rightmost index expression
en−1 is examined. If only one index term lThread.Idx[r] appears and the coefficient CI

r is a
constant value, L × bSl/{CI

r × sizeof(type of vp element )}c is added to P ′′r . This expression
evaluates the efficiency of coalescing, i.e. how many cache lines are needed for the accesses in a warp.

For example, threads of the consecutive lThreadIdx.x value access the consecutive elements on
the occurrence of b in Fig. 8 l. 10, because the rightmost index expression is col (=lThreadIdx.x).
Thus N× bSl/{1× sizeof(int)}c is added to P ′′0 .

4.3 Thread Mapping

The execution configuration is specified for each thread invocation. Thus the possibilities of coa-
lescing accesses and explicit caching are not influenced by the configurations of other invocations.
Therefore, each thread mapping can be determined independently. However, using the shared mem-
ories for explicit caching may reduce the concurrent blocks of other invocations.

4.3.1 Mapping Logical Dimensions within CUDA Blocks

First, the partitioning-priority values Pr(r = 0, . . . ,m− 1) are determined using P ′r, P ′′r obtained in
the static analysis. Assuming the array element is word-size, each access to the same/consecutive
elements adds Sw = 32 and bSl/{1×4}c = 128/4 = 32 to P ′r and P ′′r , respectively. Thus we currently
adopt a simple evaluation: Pr = P ′r + P ′′r .
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However, giving larger weight to P ′r may achieve better mapping result. Although P ′r and P ′′r
are comparable on evaluating the coalescing efficiency, they have different impact on the efficiency
of explicit caching; accessing to the same element requires much smaller capacity. Determining the
appropriate weighting factor is our future work.

Let r0, . . . , rm−1 are dimensions of logical grid satisfying Pr0 ≥ . . . ≥ Prm−1 . The threads which
have the same logical indices except lThread.Idx[r0] have the highest chance to apply coalescing.
Therefore, the threads aligned along the r0-direction should be grouped into a CUDA block. We
call such grouping r0-fusion.

4.3.2 Determining Size of Thread Blocks

We select the block size B from 64, 128, 256, 512 and 1024. Larger size can provide more active warps.
However, explicit caching may require larger size, which can exceed the size of shared memories or
suppress concurrent execution of blocks. Because the candidate dimensions to assign within CUDA
blocks are determined, possible explicit caching is also identified. So we compute the required shared
memory size Ss for each block size and select the maximum size for B satisfying Ss ≤ 16KB, which
enables at least 3 concurrent blocks.

4.3.3 Mapping Logical Dimensions to CUDA Dimensions

Using the determined block size B, we fix the inner-block mapping. If Dr0 is greater than B, the
threads aligned along the r0-direction must be partitioned to multiple blocks. CUDA grid/block sizes
are configured as Dr0/B ×D/Dr0 and B × 1× 1, respectively. The logical index lThread.Idx[r0]
is converted to the expression blockDim.x*blockIdx.x + threadIdx.x. Other dimensions are all
flattened to a single-dimension and the logical indices are converted to the block indices using
blockIdx.y. We call this mapping r0-fusion mapping.

If Dr0 , Dr0 × Dr1 , or so on are smaller than B, the dimensions are mapped to threadIdx.x,
threadIdx.y, and threadIdx.z. The grid/block sizes and the remaining logical indices are deter-
mined same as above.

To make optimization shown in Fig. 5, block mapping using 2-dimensional tiles is needed.
The optimization technique utilizes the program’s characteristic that the threads adjacent on x/y-
dimensions both access to the same values thus explicit caching is efficient. Therefore, the threads
are partitioned using two dimensions if P ′r0 > 0 and P ′r1 > 0. The block size B is selected from 64,
256, and 1024 in this case. CUDA grid/block sizes are configured as Dr0/b×Dr1/b×D/(Dr0×Dr1)
and b× b× 1, respectively, where b2 = B. We call this mapping r0r1-fusion mapping.

4.4 Improvements of Mapping Conversion

For some code patterns of the target program, applying the following extensions helps to obtain
better mapping result.

4.4.1 Computing Variable Number of Loop Iterations

The partition-priority value Pr shows the amount of coalesced accesses when r-fusion is selected. As
we described in Section 4.2, the priority values depend to the occurrences of array accesses and the
total iteration number of the statement including the occurrence. Therefore, under some conditions,
non-constant expressions are acceptable in our scheme as the initialize and conditional expressions
(es and ee in Section 4.1) of for loops.

The iteration number of the loop can be computed at compile time if es and ee are polynomial
expressions of first-degree terms of the outer loop variables. Therefore, our scheme can select ap-
propriate mapping in the case that the iteration number of the inner loop depends to the value of
the outer loop variable. For example, the total iteration number within 2-nested loops in Fig. 9 (a)
and (b) are N ∗ (N + 1)/2 and (N − 2) ∗ 3, respectively.

However, our scheme currently cannot generate efficient caching code for these cases. Although
the range of the inner loop variable for each outer loop iteration can be computed at compile time,
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for (i = 0 ; i < N ; i++){

for (j = 0 ; j <= i ; j++){
...

}

}

(a) j-Loop of Variable-Iterations

for (i = 1 ; i < N-1 ; i++){

for (j = i-1 ; j <= i+1 ; j++){
...

}

}

(b) j-Loop of Fixed-Iterations

Figure 9: Inner Loop Iterations Depending on Outer Loop Iterations

int a[N][N][N], b[N][N][N];

int main(){

int x, y, z, t;
...

for (t = 0 ; t < T ; t++){

for (z = 0 ; z < N ; z++){

for (y = 0 ; y < N ; y++){

for (x = 0 ; x < N ; x++){

b[z][y][x] += C0*a[z][y][x] + C1*a[z][y][x-1] + . . .;
}

}

}

copyback(b, a);

}

}

Figure 10: Sequential 3D Stencil Program

our scheme currently caches all required elements at the beginning of the kernel function and likely
to overflow the available capacity. Replacing cached elements on each loop iteration can reduce the
shared memory usage, but will increase the overhead because intra-thread synchronization is needed
for each loop iteration.

4.4.2 Distributing Loop Iterations

Our scheme described in Section 4.2 and 4.3 only maps logical thread indices to appropriate physical
indices. Therefore, the optimal mapping achieving coalesced accesses is not possible if the rightmost
index expression of an array occurrence does not include thread indices.

We illustrate a typical case using a program shown in Fig. 10. The program is a sequential C
version of 3D stencil computation which updates a 3-dimensional array for T times. Result of a
natural parallelization using MESI-CUDA is shown in Fig. 11. Compared with the original version
with 4-nested loops, the outmost t loop is left in the host function main because each iteration
have dependency with calling copyback(). Although computing each b element is independent, the
computation is extremely fine-grained while creating N3 threads may be excessive. In such cases, a
standard parallelization is leaving the inner loop(s) in the kernel function as shown in Fig. 11, thus
N2 threads perform O(N) computation in parallel. Unfortunately in this code, consecutive elements
of the array a are accessed in the same thread and the simultaneous accesses of threads cannot be
coalesced.

If iterations of the loop have no dependencies, this code pattern can be optimized by swapping
the loop variable and a logical thread index. For an array occurrence, suppose the normal forms
of rightmost and next rightmost index expressions en−1 and en−2 are CI

p × ip + Cc
p and CI

q ×
lThread.Idx[q]+ Cc

q , respectively. If ip-loop is in the form: for (ip = 0 ; ip < Lp ; ip ++), where
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__global__ int a[N][N][N], b[N][N][N];

__global__ void stencil(){

int x, y=lThread.Idx[0], z=lThread.Idx[1];

for (x = 0 ; x < N ; x++){

b[z][y][x] += C0*a[z][y][x] + C1*a[z][y][x-1] + . . .;
}

}

int main(){

int t;
...

for (t = 0 ; t < T ; t++){

stencil<[<N, N>]>();

copyback(b, a);

}

}

Figure 11: MESI-CUDA 3D Stencil Program

Table 3: Evaluation programs
matmul matrix multiplication (matrix size 81922)
jacobi Jacobi kernel (matrix size 10242, 10000 iterations)
fdtd FDTD kernel (matrix size 102402, 1000 iterations)
poisson Poisson equation solver kernel using a point-Jacobi method [15] (grid size 1283)
hotspot 2D transient thermal simulation [16] (grid size 5122)

Lp = lGrid.dim[q], the value range of ip and lThread.Idx[q] are equivalent. Thus all occurrences
of ip and lThread.Idx[q] in the kernel function are swapped each other. If such condition is not
satisfied, ip and lThread.Idx[q] are not compatible. In this case, the execution configuration and
the conditional expression of the loop also must be changed to swap the value ranges of lGrid.dim[q]
and Lp. Therefore, this optimization can be applied only when such swapping does not change the
semantics of the program.

5 Evaluation

We evaluated our scheme using five benchmark programs shown in Table 3, running on the five
environments shown in Table 4. The column ‘CC’ shows the compute capabilities of each GPU.
Host PCs in all environments run CentOS 6.4.

For each program, we compared the performance of the execution applying our mapping opti-
mization scheme with the execution using the worst mapping. Time elapsed for executing kernel
threads and the speedup ratio are shown in Table 5 and Fig. 12, respectively. Although explicit
caching is enabled for both mappings, the caching was not performed on poisson and hotspot

because of insufficient shared memory capacity.
We also evaluated increase of the coalesced accesses on each program. Using a GPU profiler

nvprof on GeForce GTX980, we obtained values of two metrics: gld transactions per request

and gst transactions per request, which are the average numbers of transactions for each simul-
taneous global memory load/store of a warp. The result is shown in Table 6. Because the metrics
values are obtained for each kernel function, the result of each function is shown for fdtd, poisson,
and hotspot. For each simultaneous accesses of 32 threads in a warp, 32 transactions occur if every
threads access to the different L2 cache line, while only 1 transaction occurs if all threads access to
the same line. Therefore, the maximum value of these metrics are 32, which means no coalesced
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Table 4: Evaluation Environments
CPU Memory GPU Generation CUDA CC
Core i7 930 2.8GHz 6GB Tesla C2075 Fermi 5.0 2.0
Core i7 3820 3.6GHz 16GB GeForce GTX680 Kepler 5.0 3.0
Core i7 4820K 3.7GHz 16GB Tesla K20c Kepler 5.0 3.5
Core i7 930 2.8GHz 6GB GeForce TITAN Kepler 5.0 3.5
Xeon E5-1620 3.6GHz 16GB GeForce GTX980 Maxwell 6.5 5.2

Table 5: Time Elapsed for Kernel Execution
Tesla C2075 GeForce GTX680 Tesla K20c GeForce TITAN GeForce GTX980

worst(s) opt(s) worst(s) opt(s) worst(s) opt(s) worst(s) opt(s) worst(s) opt(s)
matmul 355.94 5.93 343.41 4.52 139.32 5.13 84.54 3.56 80.55 1.63
jacobi 17.71 2.46 12.31 1.50 10.73 1.33 7.48 0.94 2.98 0.56
fdtd 809.73 52.39 424.85 30.14 347.00 31.27 236.62 20.84 210.87 22.40
poisson 1511.70 141.00 918.95 116.19 788.39 157.63 526.93 111.69 212.12 61.88
hotspot 7.90 1.19 8.47 1.08 3.01 0.53 2.15 0.75 0.92 0.68

access occurred, and will decrease approaching the value of 1 as the ratio of coalesced accesses
increase.

In all five benchmarks, our scheme could select the best mapping strategy. Table 6 shows that
most accesses are non-coalesced in the worst mapping and optimized mapping largely increased
coalesced accesses, reducing total transactions in each program to approximately 1/4 3. As a result,
the difference of thread mapping strategy largely affected the performance in all benchmark programs
and GPU models (Fig. 12). The optimized mapping achieved 1.4–76 times speedup compared with
the worst mapping, several to ten times speedup in most cases. The newer GPU tends to show
smaller performance differences, perhaps due to the hardware improvement such as device memory
bandwidth and the size of L2 cache (144GB/s : 768KB, 208GB/s : 1536KB, and 224GB/s : 1792KB
for C2075, K20c, and GTX980, respectively). Furthermore, the user may specify better mapping
strategy than the worst, even without deep knowledge of GPU architecture. However, the evaluation
result shows that even on the newest GPU model, several times slowdown often occurs if the mapping
strategy does not match with the low-level requirement of the hardware. Using our scheme, the user
can specify device-independent mapping without worrying such risk.

6 Related Works

As the result of speeding up various application programs using CUDA [17, 18], many optimiza-
tion techniques have been proposed [13, 14]. Although such techniques significantly improve the
execution performance, it is also pointed out that determining appropriate tuning parameters and
balancing trade-offs between conflicting techniques are complex and difficult issues [19]. Therefore,
various schemes have been proposed to provide a new GPGPU programming framework better than
conventional CUDA and OpenCL. The major approaches can be categorized to (a) automatic code
transformation from sequential programs (with some parallel directives) [20, 21, 22], (b) automatic
generation of low-level code for conventional GPGPU frameworks [23, 24], and (c) libraries hiding
low-level features [25, 26].

6.1 Programming Framework

The approaches of the category (a) transform sequential programs to CUDA code. Although many
schemes require parallelization directives [20, 22], the specification is much abstracted and simpler
than CUDA API. Thus the low-level architecture is hidden to the user and GPU programming

3Note that this table does not show increase/decrease of total load/store.
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Figure 12: Speedup of Mapping Optimization Compared to the Worst Mapping

Table 6: Global Memory Access Transactions per Load/Store
benchmark matmul jacobi fdtd poisson hotspot

kernel wH wEZ calc sum update calc update

gld (worst) 32.0 31.4 32.0 32.0 32.0 1.0 32.0 29.4 32.0
gst (worst) 32.0 32.0 32.0 8.0 32.0 1.0 32.0 32.0 32.0
gld (opt) 8.0 6.0 8.7 8.4 9.7 1.0 10.0 7.9 8.0
gst (opt) 4.0 5.0 4.5 4.0 5.0 1.0 5.0 4.0 4.0

is easier and highly-portable. Recently, OpenACC [22] is expected to be the standard of such
GPU programming scheme. However, current performance of OpenACC is worse compared with
hand-optimized CUDA code [27]. Nevertheless OpenACC provides pragmas for mapping control,
such as gang and vector, hand-optimizing is difficult and needs low-level and hardware-dependent
knowledge. Therefore, using such pragmas will spoil the advantage over CUDA programming.

The approaches of the category (b) try to hide low-level GPU features keeping the basic program-
ming model of CUDA. hiCUDA [24] automatically generates CUDA code from sequential programs
with directives. Although it is directive-based, the purpose is to simplify the programming based
on the CUDA model, not to hide CUDA/GPU architecture. The directives specify low-level be-
haviors such as allocating variables to the shared memories and synchronization. CUDA-Lite [23]
automatically generates memory access code from user-specified annotations, optimizing accesses
using shared memories.

MESI-CUDA is also of the category (b). Our purpose is to obtain a practical GPGPU pro-
gramming framework; easier than CUDA, but still achieving high-performance. Instead of mapping
other language into GPU architecture like category (a) approaches, we introduced minimum lan-
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guage extensions into CUDA to hide low-level features, but basic CUDA programming model is
retained. We regard explicit specification of host/kernel functions and kernel invocations are easy
and portable enough but also sufficient to specify reasonable outline of the program’s behavior on
GPU environments.

New features hiding conventional low-level features have been added to newer GPUs and CUDA
versions. CUDA 6 [11] and Kepler GPUs introduced managed memory, which works similar to
MESI-CUDA’s VS variables. The large difference is that CUDA 6 implements managed memory
in hardware/driver-level, while VS variables are implemented in compiler-level as a source code
translation. Our advantage is that compile-time optimization is possible using static analysis, such
as memory access optimizations and also thread mapping optimization proposed in this paper.
The main purpose of managed memory is easier GPGPU programming and using low-level API is
encouraged for the high-performance. In contrast, the goal of MESI-CUDA is to hide optimization
under the compiler.

The approaches of the category (c) is also practical. Template-base libraries achieve high reusabil-
ity with small overhead. Instead of automatically generating CUDA code, this approach can provide
highly hand-optimized code encapsulating its implementation details. For example, Thrust [26] pro-
vides some generic classes so that the user can efficiently handle complicated data structures on
GPU.

The library-approach extends the programming framework without modifying the compiler. Al-
though it has an advantage on the implementation cost, global optimization at compile time cannot
be introduced. Dynamic optimization, i.e. tuning the library parameters on the fly, is restricted on
GPU because using conditional branch in the kernel function may largely decline the performance.

6.2 Automatic Optimization

Many automatic optimization schemes have been proposed for GPGPU programming frameworks [28,
21, 23, 24, 29, 30].

Baskaran et al. [28, 21] use polyhedral model to analyze array accesses in nested loops and obtains
affine relations between loop variables and array indices. Using the result, they make optimization
on generating CUDA code from sequential C code; mapping loop iterations to CUDA threads is
determined to improve memory access efficiency. Our scheme currently adopts simpler and low-cost
analysis because our mapping scheme is not so flexible as theirs. The workload of each thread is
specified by the user as a kernel function and cannot be determined by the compiler.

Yang et al. [29] propose a compiler which optimizes user’s GPU kernel functions. Merging
threads/blocks and using shared memories for coalescing accesses, they make a kind of mapping
optimization to improve memory access efficiency like our scheme. However, their mapping is less
flexible because they only optimize within kernel functions and do not change the thread mapping
specified as the execution configuration. Furthermore, the user must specify physical mapping.

Hoshino, et al. [27] report that the layout of data structure largely affects the performance
of GPGPU programs. Our scheme selects thread mapping to maximize the chance of optimizing
memory accesses in the kernel function. However, the performance may not be sufficient if conflicting
mappings are required in a kernel function. Thus introducing data layout optimization may improve
our scheme. In Section 7.1 we discuss this issue.

7 Future Works

7.1 Introducing Data Layout Optimization

As we mentioned in Section 6.2, the layout of data structure affects the memory access. Sim-
ilar as changing thread mapping, transposing multi-dimensional arrays also influences coalesced
accesses. Changing array-of-structures (AoS) to structure-of-arrays (SoA) or array-of-structures-of-
tiled-arrays (ASTA) increases data locality and enables coalesced accesses [14].

Although array transposing and our thread mapping intuitively seems to have the same effect,
they have some practical advantages/disadvantages. In the case that multiple arrays in a kernel
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function requires different thread-data mapping to maximize the coalesced accesses, thread mapping
cannot satisfy both demands, while transposing one of the array may resolve the conflict. AoS-to-
SoA optimization is an another example that data layout optimization surpasses thread mapping.
However, changing data layout during the execution requires notable cost. In the case that multiple
host/kernel functions require different thread-data mapping for the same array, transposing between
kernel invocations causes the overhead while specifying different thread mapping for each invocation
does not need any cost. Therefore, our future work is to use both optimization scheme and apply
appropriate one for each case.

7.2 Thread Mapping to multi-GPUs

If multiple GPU cards are installed on a PC, the GPUs can run kernel threads in parallel. In CUDA
programming, API functions target the current device, which can be explicitly switched calling
cudaSetDevice(). Therefore, to utilize multi-GPUs, the user must be aware of the individual GPU
devices and (1) explicitly split a kernel invocation into multiple invocations for each device, and also
(2) explicitly transfer required data to/from each device.

On splitting a kernel invocation, the user must load-balance on the devices; if different models
are installed or the workload of each thread is not uniform, implementing a dynamic load-balancing
mechanism will be needed. On such dynamic scheduling, efficiently copying array segments to the
device on need will be also difficult and troublesome.

MESI-CUDA programming model, which the host and device virtually share a single memory,
can be naturally extended to support multi-GPUs, in which the host and all devices virtually share
a single memory. Although this model resolves the issue (2), conventional kernel invocation could
not resolve the issue (1). Introduction of logical mapping proposed in this paper hides conventional
execution configuration and physical mapping under logical execution configuration. Our future
work is to design a scheme that user’s kernel invocation using logical mapping is converted to
multiple kernel invocations using physical mapping, thereby multi-GPUs can be utilized without
any additional specifications.

8 Conclusion

We are developing a GPGPU programming framework MESI-CUDA for the high-performance com-
puting easier than CUDA. Providing virtual shared variables, MESI-CUDA hides low-level memory
management and data transfer. However, GPU thread creation and mapping are same as CUDA
and device-dependent hand-optimization is needed for the performance. In this paper, we proposed
a new thread creation/mapping scheme. We introduced logical mapping specification independent
from the low-level architecture. The compiler converts the mapping to CUDA’s physical mapping,
optimizing memory accesses and controlling the concurrency of blocks and warps.

As the result of evaluation, our scheme selected the optimal mapping strategy for five benchmark
programs. Compared with the worst mapping, The global memory transaction was reduced to
approximately 1/4 and 1.4–76 times speedup was achieved. However, the current static analysis is
still rough estimation. More evaluation and improving the scheme are our future works.
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